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ANALYTIC APPROXIMATIONS FOR MULTI-ASSET OPTION PRICING

CAROL ALEXANDER AND AANAND VENKATRAMANAN

Reading University

We derive general analytic approximations for pricing European basket and rainbow
options on N assets. The key idea is to express the option’s price as a sum of prices of
various compound exchange options, each with different pairs of subordinate multi-
or single-asset options. The underlying asset prices are assumed to follow lognormal
processes, although our results can be extended to certain other price processes for
the underlying. For some multi-asset options a strong condition holds, whereby each
compound exchange option is equivalent to a standard single-asset option under a
modified measure, and in such cases an almost exact analytic price exists. More gen-
erally, approximate analytic prices for multi-asset options are derived using a weak
lognormality condition, where the approximation stems from making constant volatil-
ity assumptions on the price processes that drive the prices of the subordinate basket
options. The analytic formulae for multi-asset option prices, and their Greeks, are de-
fined in a recursive framework. For instance, the option delta is defined in terms of the
delta relative to subordinate multi-asset options, and the deltas of these subordinate
options with respect to the underlying assets. Simulations test the accuracy of our
approximations, given some assumed values for the asset volatilities and correlations.
Finally, a calibration algorithm is proposed and illustrated.

KEY WORDS: basket options, rainbow options, best-of and worst-of options, compound exchange
options, analytic approximation.

1. INTRODUCTION

This paper presents a recursive procedure for pricing European basket and rainbow op-
tions on N assets. The pay-off to a basket option at its maturity T is ω[�NS′

T − K ]+, and
that of a rainbow option is ω[max{S1T , . . . , SNT}− K]+, where ST = (S1T, S2T, . . . , SNT)
are the N asset prices, K is the option strike, ω = 1 (call) or −1 (put) and the weights
�N = (θ1, θ2, . . . , θN) are real constants. Zero-strike rainbow options are commonly
termed best-of-N-assets or worst-of-N-assets options. Since min {S1T , . . . , SNT} =
−max{− S1T , . . . , −SNT}, a pricing model for best-of options also serves for worst-
of options. The most commonly traded two-asset options are exchange options (rainbow
options with zero strike) and spread options (basket options with weights 1 and −1).
Margrabe (1978) derived an exact solution for the price of an exchange option, under
the assumption that the two asset prices follow correlated lognormal processes. However,
a straightforward generalization of this formula to any two-asset option with non-zero
strike is impossible. A linear combination of lognormal processes is no longer lognormal,
and it is only when the strike of a two-asset option is zero that one may circumvent this
problem by reducing the dimension of the correlated lognormal processes to one. Hence,
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academic research has focussed on deriving good analytic approximations for pricing
two-asset options with non-zero strike, as well as more general multi-asset options.

Analytic approximations for pricing rainbow options include that of Johnson (1987),
who extends the two-asset rainbow option pricing formula of Stulz (1982) to the general
case of N assets. Ouwehand and West (2006) verify the results of Johnson (1987) and
explain how to prove them using a multivariate normal density approximation derived
by West (2005). Then, they explain how to price N asset rainbow options using this
approach, providing an explicit approximation for the case N = 4. For options on two
assets with different pay-off profiles, Topper (2001) uses a finite element scheme to solve
nonlinear parabolic price PDEs.

Approximations for basket options began with Levy (1992), who approximated a
basket price distribution with that of a single lognormal variable, matching the first and
second moments. Then Gentle (1993) derived the basket option price by approximating
the arithmetic average by a geometric average. Milevsky and Posner (1998a) used the
reciprocal gamma distribution and Milevsky and Posner (1998b) used the Johnson (1949)
family of distributions to approximate the distribution of the basket price. Extending the
Asian option pricing approach of Rogers and Shi (1995), Beißer (1999) expressed a
basket option price as a weighted sum of single-asset Black-Scholes prices, with adjusted
forward price and adjusted strike for every constituent asset. Finally, Ju (2002) used a
Taylor expansion to approximate the ratio of the characteristic function of the average of
correlated lognormal variables, which is approximately lognormal for short maturities.
Krekel et al. (2004) compare the performance of these models, concluding that the
approximations of Ju (2002) and Beißer (1999) are most accurate, although they tend to
slightly over- and underprice, respectively. However, many of these methods have limited
validity or scope. They may require a basket value that is always positive, or they may not
identify the effect of each individual volatility or pair-wise correlation on the multi-asset
option price or its hedge ratios.

This paper develops an analytic approximation that has none of these limitations. It
is based on the novel idea of writing a basket or rainbow pay-off as a sum of pay-offs
to compound exchange options (CEOs), where the “assets” in these exchange options
are pairs of subordinate basket options, and then applying a recursive procedure to
obtain a decomposition of the multi-asset option’s pay-off into a sum of pay-offs to
standard, single-asset European calls and puts (henceforth, vanilla options) and options
to exchange vanilla options on the assets. Each asset price is assumed to follow a standard
geometric Brownian motion (GBM) process, but this assumption may be relaxed to allow
more general drift and local volatility components. The price of a vanilla option follows
an Itô’s process, which we approximate with a lognormal process and hence the prices
of the exchange options on vanilla options are obtained using the formula of Margrabe
(1978). Then an analytic approximation to the multi-asset option price is given by a
recursive application.

In the following, Section 2 presents these recursive pay-off decompositions and de-
rives the prices of European basket and rainbow options as linear combinations of prices
of vanilla options and options to exchange such options. Section 3 analyzes CEOs on
vanilla options, deriving conditions under which (1) the price processes for the vanilla
options are approximately lognormal, and (2) their relative prices are almost exactly
lognormal. Section 4 derives approximate basket option prices based on both these
conditions. Section 5 presents simulations that illustrate the accuracy of our approxima-
tions and Section 6 describes a general calibration algorithm. Section 7 summarizes and
concludes.
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2. PRICING FRAMEWORK

The pay-off to a basket option on N assets with maturity T and (any real) strike K is

VNT = [ω(BT − K)]+ = [ω(�N S′
T − K)]+ = [ω�N(S′

T − K′)]+,(2.1)

where BT = �NS′
T and K = (K1, K2, . . . , KN) such that �NK′ = K , other notation being

previously defined. Now set �N = (�m, �n), ST = (SmT, SnT), and K = (Km, Kn) for
some positive integers m and n such that m + n = N. Define the sub-basket call and put
pay-offs CmT = [�m(S′

mT − K′
m)]+, and PmT = [−�m(S′

mT − K′
m)]+, and similarly for n.

Then (2.1) becomes

VNT = [CmT − PnT]+ + [CnT − PmT]+.(2.2)

Alternatively, setting �N = (�m, −�n),

VNT = [CmT − CnT]+ + [PnT − PmT]+.(2.3)

The above representations follow on noting that, if f + = max{f , 0} and f − = max{−f ,
0} and f and g are any real-valued functions, then [ f + g]+ = [ f + − g−]+ + [g+ − f −]+

and [ f − g]+ = [ f + − g+]+ + [g+ − f +]+. For 0 ≤ t < T , VNt may now be computed
as the discounted sum of the risk-neutral expectations of the two replicating CEO pay-
offs which appear on the right-hand side: in case (2.2), they are pay-offs to exchange
options on a basket call and a basket put; and in case (2.3) they are pay-offs to exchange
options on two basket calls and two basket puts with a different number of assets in each
basket.

Decompositions of the form (2.2) or (2.3) are then applied to each of CmT , PmT , CnT ,
and PnT in turn, choosing suitable partitions for m and n which determine the number of
assets in the subordinate basket calls and puts. By applying the pay-off decomposition
repeatedly, each time decreasing the number of assets in the subordinate options, one
eventually expresses the pay-off to an N-asset basket option as a sum of pay-offs to CEOs
in which the subordinate options are standard single-asset calls and puts, and ordinary
exchange options. The price of the original N-asset basket option is then computed as
the sum of the prices of CEOs and standard exchange options. We explain how to price
CEOs in terms of standard single-asset option prices in the next section.

Figure 2.1illustrates this recursive decomposition for pricing a four-asset basket option
(we have only shown one leg of the tree, but the other leg can be priced similarly). The four-
asset basket option has price equal to the sum of the two CEO prices on the penultimate
level of the tree. To price these CEOs we have first to compute the prices of the 4 two-asset
basket options on the level below, but to price these we must first price eight CEOs—and
to price the CEOs we need to price the standard calls on the four assets (we only need
call prices, because we can deduce the corresponding put prices using put-call parity).

For a general N-asset basket option our approach requires the evaluation of 2(N − 1)
CEO prices and 2N standard option prices. When N is odd, terminal nodes will contain
vanilla options. For instance, for N = 3 and the pay-off [S1T − S2T + S3T − K]+, the
decomposition may be written [[S1T − S2T ]+ − [K − S3T ]+]+ + [[S3T − K]+ − [S2T −
S1T ]+]+, so we choose a pair of exchange options on assets one and two and a pair of
vanilla options on asset three. The weighted sum of the strikes of the exchange or vanilla
options that appear in the terminal nodes of the tree is equal to K, the strike of the basket
option.
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FIGURE 2.1. Pricing tree for four-asset basket option.

Now consider a general rainbow option with pay-off max{S1T − K, . . . , SNT − K}. Its
price may be expressed in terms of an N-asset basket option price and exchange option
prices. To see this, let (n1, n2, . . . , nN) be a permutation of (1, 2, . . . , N) and choose k to be
some integer between 1 and N. By splitting the basket of N assets into two sub-baskets,
where k determines the size of the sub-baskets and the permutation (n1, n2, . . . , nN)
determines the assets in these sub-baskets, the rainbow option’s pay-off may be written
as the sum of two pay-offs, one to a best-of option on a sub-basket and the other to a
compound option, as

max
{

Snk+1T, Snk+2T, . . . , SnNT
} − K

+ [
max

{
Sn1T, Sn2T, . . . , SnkT

} − max
{

Snk+1T, Snk+2T, . . . , SnNT
}]+

.

The best-of option pay-off terms here may themselves be represented as the sum of two
such pay-offs, until all sub-baskets are on one or two assets. Once the sub-basket size is
eventually reduced to two, we use the identity max{SiT , SjT} = SjT + [SiT − SjT ]+.

For every permutation (n1, n2, . . . , nN) and index k we obtain a different pay-off
decomposition for the rainbow option. Obviously, the value of the pay-off will be the
same in each case, so the model should be calibrated in such a way that the option price
is invariant to the choice of (n1, n2, . . . , nN) and k. For illustration, consider a rainbow
option on four assets. Here, it is convenient to use the notation Xni t for the price of an
option to receive asset ni in exchange for selling asset ni+1. Choosing (n1, n2, n3, n4) = (1,
2, 3, 4) and k = 2, the rainbow option’s pay-off P4T may be written P4T = S4T + X3T +
[BT ]+ − K. Thus, the price of the rainbow option is P4t = S4t + X3t + Vt − Ke−r(T−t),
where Vt = e−r (T−t)EQ{[BT]+} is the price of a zero-strike basket option with four assets
whose prices are {X1t, S2t, X3t, S4t} and with weights {1, 1, −1, −1}. Recall that, under
the correlated lognormal assumption, an analytic solution exists for Xit. Hence, P4t may
be evaluated because we have already derived the price Vt of the basket option; it may be
expressed in terms of CEO prices.

We have chosen k = 2 above because this choice leads to the simplest form of pay-off
decomposition for a four-asset rainbow option. In fact, for any permutation (n1, n2, n3,
n4), the pay-off may be written P4T = Sn4T + Xn3T + [Sn2T − Xn1T − Sn4T + Xn3T]+ − K .
Hence, a general expression for the price of a four-asset rainbow option is P4t = Sn4t +
Xn3t + V4t − Ke−r (T−t), where V4t = e−r (T−t)EQ{[BT]+} denotes the price of a zero-strike
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basket option with four assets whose prices are {Xn1t, Sn2t, Xn3t, Sn4t} and with weights
{1, 1, −1, −1}. This argument can be extended to rainbow options on more than four
assets. For example, the pay-off to a rainbow option on three assets, having prices S5,
S6, and S7, may be written P3T = S7T + X6T + [S5T − S7T + X6T ]+, and the price of a
seven-asset rainbow option is P7t = P3t + EQ{[P4T − P3T]+}.

3. PRICING CEO’S

The pay-off decompositions illustrated above have employed options on a basket which
may contain the assets themselves, options written on these assets, and options to ex-
change these assets. A suitable pay-off decomposition will express the price of these
basket options as a sum of CEO prices. The two options exchanged in the CEO (which
may be on different assets or may themselves be compound options) always have the same
maturity as the CEO. We now derive an analytic approximation for the CEO price, first
assuming the underlying assets follow correlated lognormal processes, and then under
more general price processes. Our key idea is to express the price of such a CEO as the
price of a single-asset option that can be easily derived.

Let (�, (Ft)t≥0, Q) be a filtered probability space, where � is the set of all possible
events such that S1t, S2t ∈ (0, ∞), (Ft)t≥0 is the filtration produced by the sigma algebra
of the price pair (S1t, S2t)t�0 and Q is a bivariate risk-neutral probability measure.
Assume the risk-neutral price dynamics are governed by dSit = rSitdt + σ iSitdWit with
〈dW 1t, dW 2t〉 = ρdt for i = 1, 2, where W 1 and W 2 are Wiener processes under the
risk-neutral measure Q, σ i is the constant volatility of asset i, and ρ is the constant
correlation between dW 1 and dW 2. Consider an option to exchange a vanilla option on
asset one with a vanilla option on asset two, where all options have the same maturity
T . Let Uit and Vit denote the prices of the vanilla call and put on asset i with common
strike Ki, for i = 1, 2. If the CEO is on two calls the pay-off is [ω(U1T − U2T )]+, if the
CEO is on two puts the pay-off is [ω(V1T − V2T )]+, and the pay-off is either [ω(U1T −
V2T )]+ or [ω(V1T − U2T )]+ if the CEO is on a call and a put, where ω = 1 for a call CEO
and −1 for a put CEO.

The price ft of a CEO can be obtained as a risk-neutral expectation of the terminal
pay-off, for example, for a CEO on two calls

ft = e−r (T−t)EQ{[ω(U1T − U2T)]+|Ft}.

But the application of risk-neutral valuation requires a description of the price processes
Uit and Vit, for i = 1, 2. To this end we apply Itô’s Lemma to ft and use the Black-Scholes
differential equation to obtain

dUit =
(

∂Uit

∂t
+ r Sit

∂Uit

∂Sit
+ 1

2
σ 2

i S2
it
∂2Uit

∂S2
it

)
dt + σi Sit

∂Uit

∂Sit
dW it

= rUit dt + ξitUit dW it,

(3.1)

where ξit = σi
Sit
Uit

∂Uit
∂Sit

. Similarly, setting ηit = σi
Sit
Vit

| ∂Vit
∂Sit

| yields

dVit = r Vit dt + ηitVit dW it.(3.2)

We restrict our subsequent analysis to pricing a CEO on two calls (the following
derivations are very similar when one or both of the standard options are puts). We first
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solve for the prices Uit of the underlying options and their volatilities ξ it, for i = 1, 2.
Then we derive “weak” and “strong” lognormality conditions, under which the CEO
price is approximately equal to a single-asset option price under an equivalent measure.

LEMMA 3.1. When the asset price Sit follows a GBM with Wiener process Wit, a standard
call option on asset i has price process described by (3.1) with volatility ξ it following the
process described by

dξit = ξit

(
σi − ξit + σi Sit


it

�it

)
[−ξit dt + dW it] ,(3.3)

where �it = ∂Uit
∂Sit

and 
it = ∂�it
∂Sit

are the delta and gamma of the call option.

Proof . Let θit = ∂Uit
∂t and Xit = �it

Uit
. Then, dropping the subscripts, dξ = σ (XdS +

SdX + dSdX). By Itô’s Lemma

d� = ∂θ

∂S
dt + ∂�

∂S
(r Sdt + σ SdW) + 1

2
∂2�

∂S2
σ 2S2 dt

= ∂

∂S
(rU) dt − (r� + 
σ 2S) dt + σ S
dW

= −
σ 2Sdt + σ S
dW,

and

d X = U−1 d� − U−2�dU + U−3�dU2 − U−2d�dU

= U−1 (
�ξ 2 − σ S
ξ − r� − 
σ 2S

)
dt + U−1 (σ S
 − ξ�) dW.

Hence dξ = (σξ − ξ 2 + σ 2 S2

U 
) [−ξdt + dW], which can be rewritten as (3.3). �
The only approximation we need to make is that σ iSit
it/�it is constant in equa-

tion (3.3), that is, set ci = σ iSit
it/�it and write σ̃i = σi + ci . Then (3.3) becomes

dξit = ξit(ξit − σ̃i ) (ξit dt − dW it) .(3.4)

LEMMA 3.2. Let ki = σ̃i/ξ0 − 1 and W∗
it = − 1

2 σ̃ t + Wit, for i = 1, 2. Then (3.4) has
solution

ξit = σ̃i (1 + ki e−σ̃i W∗
it )−1.(3.5)

For ξ it to remain finite, we must have W∗
it > 1

2 σ̃i t + σ̃−1
i ln |ki | for all t ∈ [0, T ]. When

ξi0 > σ̃i the option volatility process explodes in finite time and the boundary at ∞ is an
exit boundary.

Proof . The proof is the same for i = 1 and 2, so we can drop the subscript i for
convenience. If ξ0 = σ̃ then ξt = σ̃ for all t > 0. So in the following we consider two
separate cases, according as ξ0 < σ̃ and ξ0 > σ̃ .

It follows from (3.4) that dξ t → 0 whenever ξ t → 0 or σ̃ . So if the process is started
with a value ξ0 < σ̃ then ξ t will remain bounded between 0 and σ̃ (σ̃ ≥ ξt ≥ 0) for all t
∈ [0, T ]. On the other hand, when ξ0 > σ̃ , ξ t is bounded below by σ̃ but not bounded
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above, and ξt − σ̃ ≥ 0. Setting xt = 1
σ̃

ln | ξt−σ̃

ξt
| and applying Itô’s Lemma, we can show

that dxt = 1
2 σ̃dt − dW t and xt = x0 + 1

2 σ̃ t − Wt. Substituting xt back into the above
equation yields ξt = σ̃ (1 + ke−σ̃ W∗

t )−1.
Now we show that the option volatility process explodes when ξi0 > σ̃i and the bound-

ary at ∞ is an exit boundary. That is, ξ it reaches ∞ in finite time and once it reaches ∞,
it stays there. From the above equation, we see that ξ t → ∞ when W∗

t → σ̃−1 ln |k|. So
the volatility process could reach ∞ in finite time. However, when W∗

t < σ̃−1 ln |k| the
above equation implies that ξ t could become negative, which cannot be true. So to prove
that ξ t remains strictly positive, we need to know more about the boundary at ∞. If the
boundary is an “exit” boundary, then ξ t cannot return back once it enters the region.
That is, if ξ τ = ∞ for some stopping time 0 ≤ τ ≤ T , then ξ s = ∞ for all s > τ .

In fact, we can indeed classify ∞ as an exit boundary, and to show this we perform the
test described in Lewis (2000), Durrett (1996), and Karlin and Taylor (1981). To this end,
let s(y), m(y) be functions such that, for 0 < y < ∞, s(y) = exp{− ∫ y 2α(x)

β(x)2 dx}, m(y) =
β(y)2s(y). Define S(c, d), M(c, d), and N(d) as S(c, d) = ∫ d

c s(y) dy, M(c, d) = ∫ d
c

1
m(y) dy,

N(d) = limc↓0
∫ d

c
S(c,y)
m(y) dy. Then, the Feller test states that the boundary at ∞ is an

exit boundary of the process if M(0, d) = ∞ and N(0) < ∞. In our case, we have
α(x) = x2(x − σ̃ ) and β(x) = −x(x − σ̃ ), so

m(y) = σ̃ 2 y2; s(y) = exp
{
−

∫ y 2
x − σ̃

dx
}

= σ̃ 2

(y − σ̃ )2

M(c, d) = 1
σ̃ 2

[
1
c

− 1
d

]
; S(c, d) = σ̃ 2

[
1

σ̃ − d
− 1

σ̃ − c

]

N(d) =
∫ d

0
S(0, x)m(x) dx = − d

σ̃
− ln |d − σ̃ | + ln σ̃ .

This shows that M(0, d) = ∞ and N(0) < ∞, hence ξ it explodes and ∞ is an exit
boundary. �

Now that we have characterized the option price volatility, it is straightforward to find
the option price under our lognormal approximation, as follows:

LEMMA 3.3. When the option volatilities are given by (3.5) the call option price at time
t is

Uit = Ui0 ert

(
eσ̃i W∗

it + ki
)

1 + ki
,(3.6)

where ki = ( σ̃i
ξi0

− 1) and W∗
it = − 1

2 σ̃ t + Wit. Moreover, when ξi0 > σ̃i , Uit → 0 as ξ it →
∞.

Proof . Given the option price SDE (3.1), dropping the subscript i and solving for U ,
we get

Ut = U0 exp
(

rt − 1
2

∫ t

0
ξ 2

t dt +
∫ t

0
ξt dW t

)
.(3.7)

Substituting d(ln |σ̃ − ξt|) = 1
2ξ 2

t dt − ξt dW t in the above equation gives
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Ut = U0 exp
(

rt −
∫ t

0
d(ln |σ̃ − ξt|)

)

= U0 exp(rt − ln |σ̃ − ξt| + ln |σ̃ − ξ0|)

= U0ert
(

σ̃ − ξ0

σ̃ − ξt

)
,

(3.8)

which can be rewritten as equation (3.6). �
From Lemma 3.3, since ξ t is bounded between 0 and σ̃ when ξ0 < σ̃ and bounded

below by σ̃ when ξ0 > σ̃ , we can conclude that Ut will remain strictly positive for all time
t ∈ [0, T ]. However, for ξ0 > σ̃ , if the volatility explodes (ξ t → ∞), equation (3.8) shows
that Ut → 0. Moreover, once Ut reaches zero, it will stay there.

The option price process (3.6) will follow an approximately lognormal process if
ξi0 ≈ σ̃i , and we call this the weak lognormality condition. But when is ξi0 ≈ σ̃i ? By
definition, ξit → σ i if ∂Uit

∂Sit
→ 1 and Sit

Uit
→ 1 as t → T . Then, σ i ≈ σ̃i and therefore

ξi0 ≈ σ̃i . Moreover, from equation (3.5), ξit ≈ σ̃i , for all t ∈ [0, T ]. Under the weak
lognormality condition, the option price volatilities ξ it and ηit are directly approximated
as constants in equations (3.1) and (3.2), respectively. This allows us to approximate the
option price processes as lognormal processes. Hence, we can change the numeraire to
be one of the option prices, so that the price of a CEO may be expressed as the price of
a single-asset option, and we can price the CEO using the formula given by Margrabe
(1978).

The weak lognormality condition is used to derive analytic approximations to basket
option prices in Section 4. However, for some multi-asset options it is possible to obtain
an almost exact price. The following result provides a strong lognormality condition,
under which the relative option price follows a lognormal process almost exactly.

THEOREM 3.4. The CEO on calls has the same price as a standard single-asset option
under a modified yet equivalent measure if the following condition holds

U10
k1

1 + k1
− U20

k2

1 + k2
= 0.(3.9)

Proof . The call CEO on two calls has time 0 price given by

f0 = e−r TEQ

{[
U10er T

1 + k1

(
eσ̃1W∗

1T − k1
) − U20er T

1 + k2

(
eσ̃2W∗

2T − k2
)]+}

= EQ

{[
U10

1 + k1
eσ̃1W∗

1T − U20

1 + k2
eσ̃2W∗

2T −
(

U10
k1

1 + k1
− U20

k2

1 + k2

)]+}

= EQ

{[
U10

1 + k1
exp

(∫ T

0
−1

2
σ̃ 2

1 ds + σ̃1 dW 1s

)

− U20

1 + k2
exp

(∫ T

0
−1

2
σ̃ 2

2 ds + σ̃2 dW 2s

)]+}
.

(3.10)
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Let dW 1t = ρdW 2t + ρ ′dZ1t, where W 2 and Z1 are independent Wiener processes,
ρ ′ =

√
1 − ρ2 and P is a probability measure whose Radon-Nikodym derivative with

respect to Q is given by

dP

dQ
= exp

(
−1

2
σ̃ 2

2 t + σ̃2W2t

)
.

Let Yt = U1t(1+k2)
U2t(1+k1) and Z2t = W2t − σ̃2t. Then Z1 and Z2 are independent Brownian mo-

tions under the measure P and the dynamics of Y can be described by

d(ln Yt) =
(

−1
2
σ̃ 2

1 + 1
2
σ̃ 2

2

)
dt + (ρσ̃1 − σ̃2) dW 2t − ρ ′σ̃1d Z1t = −1

2
σ̃ 2dt + σ̃t dW t,

where W is a Brownian motion under P and σ̃ 2 = (ρσ̃1 − σ̃2)2 + (ρ ′σ̃1)2 = σ̃ 2
1 + σ̃ 2

2 −
2ρσ̃1σ̃2. Now the CEO price can be written as the price of a single-asset option written
on Y , as

f0 = U20

1 + k2
EP

{[
Yt exp

(
−1

2

∫ T

0
σ̃ 2

s ds +
∫ T

0
σ̃s dW s

)
− 1

]+}
= U20

1 + k2
EP{[YT − 1]+}.

When σ̃i > ξi0, for i = 1, 2, the above expectation simply yields the Black-Scholes price
of a European option on Yt with strike equal to one. But when σ̃i < ξi0, ξ iτ could reach
∞ for some τ ≤ T . However, when the volatility explodes Uis = 0 for s ≥ τ , since the
boundary at ∞ is an exit boundary, and the expectation in equation (3.10) need only be
computed over the paths for which the individual option volatilities remain finite. Now
by Lemma 3.2,

Z1t > ρ ′−1
(

1
2

(σ̃1 − σ̃2)t + σ̃−1
1 ln |k1| − σ̃−1

2 ln |k2|
)

= μ1

and Z2t > − 1
2 σ̃2t + σ̃−1

2 ln |k2| = μ2.

Hence, setting mi = min {Zis: 0 ≤ s ≤ T}, the price of the CEO may be written

f0 = U20

1 + k2
EP{1m1>μ1;m2>μ2 [YT − 1]+} + U10

1 + k1
EQ

{
1m1>μ1;m2<μ2

[
eσ̃1W∗

1T − k1
]+}

,

(3.11)

where 1 is the indicator function. The first term on the right-hand side gives the expected
value of the pay-off when neither of the volatilities explode. This is equal to the price of a
down-and-out barrier exchange option which expires if either of the asset prices crosses
the barrier. The second term is equivalent to a single-asset external barrier option when
only ξ 2 explodes. Then U2T becomes zero and the CEO pay-off reduces to U1T .

Single-asset barrier options can be priced by an application of the reflection principle
(see Karatzas and Shreve 1991) and the case of a two-asset barrier exchange option is an
extension of that.1 Using the reflection principle, the first term in the right-hand side of
equation (3.11) may be written

EP

{
1YT>1; m1>μ1; m2>μ2

} = EP

{
1YT>1; m1>μ1

} − EP

{
1ln YT< 2μ2 ; m1>μ1

}
.

1 Carr (1995), Banerjee (2003), and Kwok, Wu, and Yu (1998) discuss the pricing of two-asset and multi-
asset external barrier options that knock out if an external process crosses the barrier. Lindset and Persson
(2006) discuss the pricing of two-asset barrier exchange options, where the option knocks out if the price of
one asset equals the other.
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FIGURE 3.1. Plot of U1tk1/(1 + k1) − U2tk2/(1 + k2) against strike (S1 = 75, S2 = 65,
σ 1 = 0.25, σ 2 = 0.25, r = 4%, T = 3 months).

The two expectation terms on the right are equivalent to the ITM probabilities of a call
option (YT > 1) and a put option (YT < exp (2μ2)) with external barriers. These may
be computed using the results of Carr (1995) and Kwok, Wu, and Yu (1998). Similarly,
the second term in the right-hand side of equation (3.11) may also be evaluated as a
combination of external barrier options. �

Whether we price the multi-asset option under the weak or the strong lognormality
condition, we must calibrate the strikes Ki of the vanilla options in the CEOs that replicate
the pay-off so that

∑
θ iKi = K. Furthermore, when applying the strong lognormality

condition we aim to find particular strikes Ki for which the relative price of these vanilla
options is lognormal. When the underlying option prices satisfy condition (3.9) almost
exactly, Theorem 3.4 allows one to price CEOs almost exactly. As discussed earlier, the
approximation error can be extremely small for certain strikes of the vanilla options and,
since we are calibrating these strikes, our approximation can be justified. For instance,
Figure 3.1 plots the behavior of condition (3.9) for two sample vanilla options and shows
that the condition holds when the strikes of the options are equal to 60.8.

In fact, we can price a CEO by dimension reduction under both the weak and the strong
lognormality conditions. In both cases a CEO becomes equivalent to a simple lognormal
exchange option, and the price of such an option can be found by change of numeraire,
as in Margrabe (1978). Under the weak lognormality condition the vanilla option prices
follow approximate lognormal processes, and under the strong lognormality condition
their relative prices follow lognormal processes, because the displacement terms cancel
out under the condition (3.9).

Finally, we remark on extending our results to asset price processes that are more
general than GBM. When we apply the weak lognormality condition σ i must be con-
stant, but many choices of drift are possible. For instance, for non-traded assets such
as commodity spots, we may choose μit = κ(θ (t) − ln Sit) as in Schwartz (1997) and
Pilipovic (2007). Theorem 3.4 may also be extended to cases where the underlying asset
prices follow certain nonlognormal processes. To see this, suppose the risk-neutral price
dynamics are governed by a general two-factor model: dSit = μi(Sit, t)dt + σ i(Sit, t)dWit,
〈dW 1t, dW 2t〉 = ρdt for i = 1, 2, where ρ is constant. It is easy to show that the option



ANALYTIC APPROXIMATIONS FOR MULTI-ASSET OPTION PRICING 677

price processes will still be given by (3.6) whenever μi(Sit, t) and σ i(Sit, t) satisfy(
∂σit

∂t
+ μit

∂σit

∂Sit
+ 1

2
σ 2

it
∂2σit

∂S2
it

)
= σit

∂μit

∂Sit
.

4. PRICING BASKET OPTIONS

First, we apply the strong lognormality condition and use the formula of Margrabe
(1978) recursively to derive almost exact prices for specific examples of basket options
with two or three assets. However, when N ≥ 4 the condition in Theorem 3.4 is too
strong. In that case, we derive analytic approximate basket option prices under the weak
lognormality condition.

Consider a CEO written on two lognormal exchange options, both having a common
asset which is used as numeraire in the method of Margrabe (1978). Then the exchange
option price processes may be described by equations (3.1) or (3.2), and the CEO can be
priced by applying Theorem 3.4. For example, the pay-off to a two-asset basket option
can be written as a sum of pay-offs to two CEOs on single-asset call and put options,
as in Section 3. A three-asset basket option with zero strike, when the signs of the asset
weights � are a permutation of (1, 1, −1) or (−1, −1, 1), is just an extension of the
two-asset case where we have an additional asset instead of the strike. The option can
be priced as a CEO either to exchange a two-asset exchange option for the third asset
or to exchange 2 two-asset exchange options with a common asset. For example, a 3:2:1
spread option has pay-off decomposition2

PT = [3S1T − 2S2T − S3T]+

= [3[S1T − S2T]+ − [S3T − S2T]+]+ + [[S2T − S3T]+ − 3[S2T − S1T]+]+.

In the general case of basket options on N underlying assets, except for the ones
discussed above, the two replicating CEOs are no longer written on plain vanilla or
lognormal exchange options, but on sub-basket options. For instance, consider a four-
asset basket option with zero strike and pay-off PT = [S1T − S2T − S3T + S4T ]+. We
have

PT = [[S1T − S2T]+ − [S3T − S4T]+]+ + [[S4T − S3T]+ − [S2T − S1T]+]+,

and since the two replicating CEOs are written on lognormal exchange options with no
common asset, the CEOs cannot be priced using Theorem 3.4. But we can adjust the
volatilities of the CEOs using the weak lognormality condition, so that the sub-basket
option price processes are approximately lognormal processes. Then the relative sub-
basket option prices also follow approximate lognormal processes and the two replicating
CEO prices can be computed by using the formula of Margrabe (1978). Thus, exact
pricing under the strong lognormality condition is only possible in special cases, and in
the general case we must use the weak lognormality condition to find an approximate
price.

2 Note that there is a closed form formula for the price of this option of the form∫ ∞

−∞

∫ ln 3
2 +x

−∞

∫ ln(3ex−2ey)

∞
(3ex − 2ey − ex) f (x, y, z) dz dy dx,

where f is the trivariate normal density function and x, y, z are the log stock price processes. However, it is
not easy to evaluate the triple integral.
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Let
(
�, (Ft)t≥0 , Q

)
be a filtered probability space, where � is the set of all possible

events such that (S1t, S2t, . . . , SNt) ∈ (0, ∞)N , (Ft)t≥0 is the filtration produced by the
sigma algebra of the N-tuplet (S1t, S2t, . . . , SNt)t≥0 of asset prices, and Q is a multivariate
risk-neutral probability measure. We assume that the underlying asset prices processes
Si are described by

d Sit = μi (Sit, t)Sit dt + σi Sit dW it, 〈 dW it, dW jt〉 = ρi j dt, 1 ≤ i , j ≤ N,

where Wi are Wiener processes under the risk-neutral measure Q, σ i is the volatility of
ith asset (assumed constant), μi(.) is a well-defined function of Sit and t, and ρ ij is the
correlation between ith and jth assets (assumed constant).

We now describe the price process VNt of the basket option on N assets. Using a
recursive argument, we begin by assuming that the prices of the call and put sub-basket
options on m and n assets follow lognormal processes. Then we show that when the basket
option volatility is approximated as a constant the basket option price process VNt can
be expressed as a lognormal process. Since Cmt, Cnt, Pmt, and Pnt are prices of basket
options themselves, we may also express their processes as lognormal process, assuming
their sub-basket option prices follow lognormal processes. In the end, these assumptions
yield an approximate lognormal process for the price of a basket option on N assets.

As before, let �N = (�m, −�n). Then the basket option price may be computed as a
sum of the price E1t of a CEO on two sub-basket calls and the price E2t of a CEO on two
sub-basket puts, that is, VNt = E1t + E2t. Each sub-basket option follows a price process
with a nonconstant volatility, but we shall express it using a constant. For instance, the
sub-basket call option price processes are written, for i = m and n

dCit = rCit dt + σ̄ Ci Cit dW̃it,

where W̃i is a Wiener process and σ̄ Ci is a constant.3 Then, by Itô’s Lemma

d E1t = r E1t dt +
∑

i=m,n

σ̄ Ci Cit�Cit dW̃it.(4.1)

Similarly, we assume the price E2t of the CEO on puts follows a process analogous to
(4.1) with Ci replaced by Pi; and when the decomposition gives two CEOs written on
call and put sub-basket options, so their price processes have a call and a put option
component, we have

d E1t = r E1t dt + σ̄ CmCmt�Cmt dW̃mt + σ̄ Pn Pnt�Pnt dW̃nt.

Now write dW̃nt = γ mn dW̃mt +
√

1 − γ 2
mn dW̃t, where W̃ is a Wiener process, independent

of W̃m, and γ mn is the correlation between the options on sub-baskets of size m and n.
Further, define

σ̃it = σ̄ Ci

Cit

VNt

∂ E1t

∂Cit
− σ̄ Pi

Pit

VNt

∂ E2t

∂ Pit
,

for i = m and n.

3 For brevity, we suppress the dependence of σ̄Ci on the option’s strike and maturity, the discount rate
etc.
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Then

dVNt = r (E1t + E2t) dt +
∑

i=m,n

σ̄Ci Cit�Cit dW̃it −
∑

i=m,n

σ̄Pi Pit�Pit dW̃it,

= r VNt dt + VNt

((
σ̄Cm

Cmt

VNt

∂ E1t

∂Cmt
− σ̄Pm

Pmt

VNt

∂ E2t

∂ Pmt

)
dW̃mt

−
(

σ̄Cn
Cnt

VNt

∂ E1t

∂Cnt
− σ̄Pn

Pnt

VNt

∂ Ent

∂ Pnt

)
dW̃nt

)
,

= r VNt dt + VNt
(
σ̃mt dW̃mt − σ̃nt dW̃nt

)
.

Now setting

σ̃ 2
t = σ̃ 2

mt + σ̃ 2
nt − 2γmn σ̃mtσ̃nt,

σ̃ 2
E1t = σ̃ 2

Cmt + σ̃ 2
Cnt − 2γmn σ̃Cmtσ̃Cnt,

σ̃ 2
E2t = σ̃ 2

Pmt + σ̃ 2
Pnt − 2γmn σ̃Pmtσ̃Pnt

yields

dVNt = r VNt dt + σ̃tVNt dW̃t.(4.2)

So that its price is given by Margrabe’s formula, the basket option price VNt is approx-
imated by a lognormal process, that is, we replace the volatility in the SDE (4.2) by a
constant, σ̄ . Thus, in place of (4.2) we assume dVNt = r VNt dt + σ̄ VNt dW̃t.

Let ν̃ be a positive real such that σ̄ = ν̃ σ̃0, where σ̃0 is the value of σ̃t at time zero.
Then dVNt = r VNt dt + ν̃ σ̃0VNt dW̃t. We have also assumed that the underlying call and
put sub-basket options follow lognormal processes, with average volatilities σ̄Ci and σ̄Pi ,
respectively. Thus, we could likewise set σ̄Ci = ν̃Ci σ̃Ci ,0 and σ̄Pi = ν̃Pi σ̃Pi ,0. However, for
ease of calibration we shall use only one parameter for the volatilities of all the options
above the base level of the pricing tree. That is, we set all ν̃’s equal to a constant, ν,
which we call the “volatility correction factor” (VCF).4 Thus, σ̄ ≈ ν σ̃0, σ̄Ci ≈ ν σ̃Ci ,0,
σ̄Pi ≈ ν σ̃Pi ,0, and so on. Note that σ̃E1t is also replaced by a constant σ̄E1, and with a
single VCF ν, σ̄E1 ≈ ν (σ̃ 2

Cm0 + σ̃ 2
Cn0 − 2γmn σ̃ Cm0σ̃Cn0)1/2 and similarly for σ̄E2.

THEOREM 4.1. The price of a general N-asset basket option may be approximated by
the recursive formula

VNt(�, St, K, T, ν, ω) = E1t(�, St, K, T, ν, ω) + E2t(�, St, K, T, ν, ω),(4.3)

4 The VCF does not apply to single-asset option volatilities. When the sub-basket size reduces to one, ν

= 1 and the option has price process (3.1) if it is a call, or (3.2) if it is a put. The sole function of the VCF is
to approximate the process volatilities of the options above the base level of the tree.
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where

E1t(�, St, K, T, ν, ω) = ω(Vmt(�m, SmT, Km, ν,+1)�(ωd11)

− Vnt(�n, SnT, Kn, ν,−χ )�(ωd12))

= ω
(
V1

mt�(ωd11) − V1
nt�(ωd12)

)
, say

E2t(�, St, K, T, ω) = ω(Vnt(�n, SnT, Kn, ν, χ )�(ωd21)

− Vmt(�m, SmT, Km, ν,−1)�(ωd22))

= ω
(
V2

nt�(ωd21) − V2
mt�(ωd22)

)
, say

with χ = +1 for a call and −1 for a put, and

di1 = ln
(
Vi

mt

/
Vi

nt

) + 1
2ν2σ̄ 2

Ei (T − t)

νσ̄Ei
√

T − t
; di2 = di1 − νσ̄Ei

√
T − t.

Proof . Since Cm, Pm and Cn, Pn are themselves prices of options on baskets of sizes
m and n, respectively, they can be computed by applying equation (4.3) recursively until
the size of a sub-basket reaches one and St = (Sit), K1 = (Ki ), and �1 = θi for some 1 ≤
i ≤ N. Then

E1(�, St, K, T, 1, ω) =ωe−r (T−t)θi (Fit,T�(ωd1) − Ki�(ωd2)) , E2(�, St, K, T, 1, ω) = 0,

where Fit,T is the ith asset forward price and

d1 =
[

ln(FitT/Ki ) +
(

r + 1
2
�2

i

)
(T − t)

] /
[�i

√
T − t] , d2 = d1 − �i

√
T − t.

For instance, when μi = (r − qi) in equation (4.1), Fit,T = Site(r−qi )(T−t) and �i = σ i. Or
more generally, when μi = κ(θ (t) − ln Sit), as in Pilipovic (2007)

Fit,T = exp
(

e−κ(T−t) ln Sit +
∫ T

t
e−κ(T−s)θ (s) ds + σ 2

i

2κ
(1 − e−2κ(T−t))

)
,

�i = σi

√
1 − e−2κ(T−t)

2κ
.

�
One of the main advantages of our approximation is that we can derive analytic

formulae for the multi-asset option Greeks which, unlike most other approximations,
capture the effects that individual asset’s volatilities and correlations have on the hedge
ratios. Differentiating the basket option price given in Theorem 4.1, using the chain rule,
yields the following

COROLLARY 4.2. The deltas, gammas, and vegas of our basket option price f are

�
f
Si

= �
f
Cj

�
Cj

Si
+ �

f
Pj

�
Pj

Si



f
Si

= 

f

Cj

(
�

Cj

Si

)2 + 

Cj

Si
�

f
Cj

+ 

f
Pj

(
�

Pj

Si

)2 + 

Pj

Si
�

f
Pj

V f
σi

= V f
σ̄E1

∂σ̄E1

∂σi
+ V f

σ̄E2

∂σ̄E2

∂σi
+ VCj

σi �
f
Cj

+ V Pj
σi �

f
Pj

,

(4.4)
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FIGURE 4.1. Deltas with respect to all four underlying asset prices.

where j is equal to m when 1 ≤ i ≤ m and equal to n when m + 1 ≤ i ≤ N. Here �z
x, 
z

x, and
V z

x denote the delta, gamma, and vega of z with respect to x, respectively. The corresponding
formulae for a rainbow option are obtained from its basket-option representation.

For example, Figure 4.1depicts the deltas of a four-asset basket option with pay-off
given by [S1 − S2 − S3 + S4]+.5 Here, we assumed the assets pay no dividends and that
their current prices are S1 = 100, S2 = 90, S3 = 85, and S4 = 75, so the basket price is
currently at zero. The discount rate is 4% and the volatilities and correlations of the asset
prices are

� =

⎛
⎜⎜⎜⎜⎜⎝

0.10

0.15

0.18

0.20

⎞
⎟⎟⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎜⎜⎝

1 0.8 0.6 0.2

0.8 1 0.55 0.65

0.6 0.55 1 0.57

0.2 0.65 0.57 1

⎞
⎟⎟⎟⎟⎟⎠ .(4.5)

The basket option is ATM with respect to every underlying asset (i.e., the price of every
asset is equal to the weighted sum of prices of the other three assets). The basket has
positive weights on assets one and four, so the deltas with respect to S1 and S4 resemble
the deltas of vanilla call options, whereas it has negative weights on assets two and three
so the deltas with respect to S2 and S3 resemble the deltas of vanilla put options. Due to
differences in the asset’s volatilities and correlations, the deltas differ. For instance, �1

≈ 0.5 but �2 ≈ −0.4. This property is not captured by any other existing approaches to
analytic approximations for multi-asset options, because they ignore the effects of asset
price volatilities and correlations on the basket option deltas.

5 To derive the deltas in Figure 4.1 we have chosen the strikes of the single-asset options so that our
approximate four-asset basket price matches its simulated price under GBM (further details are given in
Section 5). But in practice we can also calibrate these strikes using the algorithm described in Section 6.
Either way, an advantage of our approach is that analytic Greeks are obtainable, using (4.4), and it is not
necessary to derive them using time-consuming simulations.
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5. SIMULATION RESULTS

This section tests the accuracy of the weak lognormal approximation by comparing the
simulated price of various options based on standard correlated GBM processes with
that based on the approximate process (4.2). We have seen that we price a multi-asset
option as a sum of CEOs on sub-basket options. These sub-basket options are in turn
priced as sums of CEOs of smaller baskets until we arrive at a sum of CEOs on vanilla
call and put options. By rewriting the option price processes as approximate lognormal
processes we are able to apply Margrabe’s formula to compute the price of the CEO,
and hence also the price of the multi-asset option. Therefore, the accuracy of our weak
lognormal approximation for pricing CEOs is crucial for the accuracy of our multi-asset
option price approximations.

Consider the compound call exchange option that is an option to receive a vanilla call
on asset one in exchange for a vanilla call on asset two, which has pay-off

PT = [U1T − U2T]+, with U1t = [S1t − K1]+ and U2t = [S2t − K2]+.

We now simulate the price of this option in two different ways, by: (1) simulating the
underlying asset prices themselves, using correlated GBMs; and (2) simulating the CEO
price Pt directly using our lognormal approximation, viz:

d Pt

Pt
= rdt + ξ1

∂ Pt

∂U2t

U1t

Pt
dW 1t − ξ2

∂ Pt

∂U2t

U2t

Pt
dW 2t.(5.1)

Note that the deltas used here are those of the CEO with respect to the vanilla options,
and ξ 1 and ξ 2 are the option volatilities, which are approximated using (3.6). Hence, in
this case the weak lognormal approximation is done twice, once for each ξ i (i = 1, 2).

The difference between these two CEO prices depends on moneyness (of the vanilla
options and the CEO) and the option’s characteristics. We therefore change moneyness
by fixing S1 = 100, letting S2 = 80, 90, 100, 110 and setting K1 = K2 = 60, 80, 100, 120.
To further limit the number of options considered we simulate only two maturities (1 and
6 months), set discount rates to 0% or 4%, let the asset price volatilities be 20% or 50%,
and set their correlation to be 0.5 or 0.8.

Table 5.1 presents the results. To compute each option price we employed two million
simulations, including antithetic sampling to reduce the sampling variance. The GBM
price is obtained by simulating U1t and U2t and then computing [U1T − U2T ]+ and
taking the average over all two million simulations. The standard deviation is reported
next to the GBM price. In the last column, we report our approximate prices, obtained
by simulating (5.1). The approximation errors are very small indeed, especially for ITM
options, as expected.6

6. MODEL CALIBRATION

To express the price process of a sub-basket option as an approximate log-normal process
we have approximated the option volatility and assumed it is constant. Hence, any error

6 Results for other values of volatilities and correlations yield similar results. We also ran similar experi-
ments to examine the effect of weak lognormal approximation on the price processes of vanilla options and
three types of two-asset options: standard exchange options, call spread options, and two-asset basket calls.
In every case the errors between prices from approximate and GBM processes were less than 10−2; in fact
for ITM options they were usually much smaller than this.
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TABLE 5.1
CEO Prices: Correlated GBM Process versus Weak Lognormal Approximate Process

(S1 = 100)

S2 K1, K2 r T σ 1 σ 2 ρ Sim Price Std Dev Appr Price Error

80 60 0 0.08 0.2 0.2 0.50 20.0001 0.0003 20.0007 −0.0006
80 60 0.04 0.08 0.2 0.2 0.50 20.0669 0.0003 20.0665 0.0004
80 60 0 0.08 0.2 0.2 0.80 20.0000 0.0002 20.0003 −0.0003
80 60 0.04 0.08 0.2 0.2 0.80 20.0667 0.0002 20.0690 −0.0023
80 100 0 0.50 0.2 0.2 0.50 5.3946 0.0048 5.3948 −0.0002
80 100 0.04 0.08 0.5 0.5 0.50 5.6498 0.0049 5.6496 0.0001
80 100 0.04 0.08 0.2 0.2 0.80 2.4787 0.0019 2.4782 0.0005
80 100 0 0.50 0.5 0.5 0.80 9.7367 0.0109 9.7370 −0.0003
80 120 0 0.08 0.2 0.5 0.50 0.0012 0.0000 0.0014 −0.0002
80 120 0.04 0.08 0.2 0.5 0.50 0.0015 0.0001 0.0019 −0.0005
80 120 0 0.08 0.5 0.5 0.80 0.7668 0.0023 0.7649 0.0019
80 120 0.04 0.08 0.5 0.5 0.80 0.8058 0.0024 0.8039 0.0019
90 60 0 0.08 0.2 0.2 0.80 10.0019 0.0002 10.0053 −0.0034
90 60 0.04 0.08 0.2 0.2 0.80 10.0353 0.0002 10.0407 −0.0054
90 100 0.04 0.08 0.2 0.2 0.50 2.4068 0.0018 2.4108 −0.0040
90 100 0 0.08 0.2 0.2 0.80 2.2308 0.0017 2.2347 −0.0039
90 100 0.04 0.08 0.2 0.2 0.80 2.3938 0.0017 2.3954 −0.0016
90 120 0 0.08 0.2 0.2 0.50 0.0013 0.0000 0.0011 0.0002
90 120 0.04 0.08 0.2 0.2 0.50 0.0016 0.0001 0.0014 0.0002
90 120 0 0.08 0.2 0.5 0.50 0.0009 0.0000 0.0008 0.0001
90 120 0.04 0.08 0.2 0.5 0.50 0.0011 0.0000 0.0013 −0.0002
90 120 0 0.08 0.2 0.2 0.80 0.0013 0.0000 0.0012 0.0001
90 120 0.04 0.08 0.2 0.2 0.80 0.0017 0.0001 0.0015 0.0001
90 120 0 0.50 0.2 0.2 0.80 0.6314 0.0020 0.6307 0.0008

100 60 0 0.08 0.2 0.2 0.50 2.3022 0.0017 2.2984 0.0038
100 60 0.04 0.08 0.2 0.2 0.50 2.3099 0.0018 2.3031 0.0068
100 60 0 0.08 0.2 0.5 0.50 5.0126 0.0032 5.0133 −0.0007
100 60 0.04 0.08 0.2 0.5 0.50 5.0294 0.0033 5.0304 −0.0010
100 60 0 0.08 0.2 0.5 0.80 4.1516 0.0026 4.1505 0.0011
100 60 0.04 0.08 0.2 0.5 0.80 4.1655 0.0026 4.1646 0.0009
100 120 0 0.08 0.2 0.2 0.50 0.0013 0.0000 0.0010 0.0003
100 120 0.04 0.08 0.2 0.2 0.50 0.0016 0.0001 0.0014 0.0002
100 120 0 0.08 0.2 0.5 0.50 0.0004 0.0000 0.0006 −0.0002
100 120 0.04 0.08 0.2 0.5 0.50 0.0005 0.0000 0.0006 −0.0001
110 60 0 0.08 0.2 0.2 0.80 0.0054 0.0001 0.0052 0.0002
110 60 0.04 0.08 0.2 0.2 0.80 0.0054 0.0001 0.0051 0.0003
110 80 0 0.08 0.2 0.2 0.50 0.1245 0.0005 0.1242 0.0003
110 80 0.04 0.08 0.2 0.2 0.50 0.1249 0.0005 0.1247 0.0002
110 80 0 0.08 0.2 0.2 0.80 0.0054 0.0001 0.0042 0.0013
110 120 0 0.08 0.2 0.2 0.50 0.0006 0.0000 0.0004 0.0002
110 120 0 0.08 0.2 0.5 0.50 0.0001 0.0000 0.0002 −0.0001
110 120 0.04 0.08 0.2 0.5 0.50 0.0002 0.0000 0.0003 −0.0001
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in the pricing of a basket option arises from our approximation of the volatility of the
sub-basket options in the pricing tree. Quantifying this error theoretically is difficult,
given the dimensionality of the problem, but the previous section has circumvented this
by quantifying it computationally. There we showed that the option prices obtained
by simulating our approximate (weak) lognormal processes were very close to prices
obtained using GBM processes.

Now we focus on the approximate price recursion, describing how this may be applied
to basket option pricing. To this end we develop a general algorithm for choosing the
strikes of the vanilla options and for approximating the volatilities of all the options in
the pricing tree.

There are two stages to the algorithm: (1) construct the pricing tree; and (2) approxi-
mate the volatilities of the sub-basket options at each level in the tree. Stage 1 consists of
three steps

(1) Fix a partition of k, where k is the number of assets in the basket to be priced;
(2) Use this partition to decompose the basket option pay-offs into sub-basket option

pay-offs at every level of the pricing tree; and
(3) Fix the strikes of the sub-basket options at every level of the tree and choose an

appropriate permutation of asset prices. This should be consistent with the strike
of the original basket option and the decomposition structure of the pricing tree.

For step (1) we advocate setting [1: k − 1] as the partition, for k = N, N − 1, . . . , 2,
because it will allow the volatilities in stage 2 to be approximated with minimal error
(given a suitable choice of strikes at step (3), as discussed below). Thus, we choose a
pay-off decomposition in step (2) where, at every stage in the pricing tree, the option
on k assets is split into two sub-basket options: on (k − 1) assets and a single asset.
At step (3), the single-asset option will always be ATM, and the sub-basket option on
(k − 1) assets will be of very similar moneyness (defined as the ratio between the asset
price and strike) as the k-asset option. The ATM option is written on the asset with the
highest volatility among k assets while keeping the moneyness of the k − 1-asset option
as close to that of k-asset option’s moneyness. The reason for choosing this convention
is that the sub-basket option on (k − 1) assets is the closest we can get to the option on k
assets. Moreover, the resulting permutation would minimize the cascading of error due
to volatility approximation in stage 2 from a lower level to a higher level of the tree.

Hence, in stage 1, the pricing tree for an N-asset option is constructed so that the
terminal nodes contain 2(N − 1) ATM vanilla options and a pair of vanilla call and put
options with the same moneyness as the N-asset option. A simple illustration is provided
by a three-asset basket call with pay-off

[S1 + S2 + S3 − K ]+ = [[S1 + S2 − K12]+ − [K3 − S3]+]+

+ [[S3 − K3]+ − [K12 − (S1 + S2)]+]+.

The two-asset options have similar moneyness as the three-asset basket and we set K3 =
S3. Similarly,

[
[S1 + S2 − K12]+

]+ = [
[S1 − K1]+ − [K2 − S2]+

]+ + [
[S2 − K2]+ − [K1 − S1]+

]+
,

and we set K2 = S2, which leaves K1 = K − S2 − S3. Thus the vanilla options on S2 and
S3 are ATM while the vanilla options on S1 are of the similar moneyness as the basket
option. If the chosen permutation does not permit the option on S1 to be of similar
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moneyness as of the basket option, then we rearrange the order picking the next higher
asset price with similar volatility to S1.

Stage 2 consists of calibrating the VCF ν, defined in Section 4. Any basket option
price could be used for its calibration, but we recommend using an ATM basket option
price (simulated, or better, if available, its market price) because using an ITM (OTM)
basket option for calibration leads to larger errors on OTM (ITM) basket options than
we obtain using the ATM ν value. Having calibrated ν, the prices of other basket options
and all hedge ratios are derived analytically, using (4.3) and (4.4).

To illustrate the calibration algorithm, consider the five-asset basket calls examined
by Ju (2002), for which S1 = S2 = S3 = S4 = S5 = 100, θ1 = 35, θ2 = 25, θ3 = 20, θ4

= 15, θ5 = 5, and T = 1 or 3 years. As in Ju (2002) the asset price volatilities are equal
(σ = 20% or 50%), their correlations are also equal (ρ = 0 or 0.5), the discount rate is
either 0% or 5%, and the five-asset basket call has strike 90, 100 or 110.7 Following step
(1), we construct the pricing tree so that the strikes of the four ATM vanilla options at
the base have Ki = θ i for i = 2, . . . , 5 and the other vanilla option has K1 = 25, 35, or 45
according as the five-asset basket call has strike 90, 100, or 110.

Table 6.1 reports the results from step (2), that is, the calibration of the VCF for
each set of options. The column headed “simulation results” reports the basket option
prices obtained by simulating the five correlated GBM processes for the underlying assets
and taking the average price over two million simulations. The next column reports the
standard error of these simulations and the column headed “approximate price” is the
price obtained using our weak lognormal approximation in the calibration algorithm
described above. The last two columns report the calibrated VCF and the difference
between the two prices.

The VCF is sensitive to asset price volatilities and correlation. A VCF equal to or close
to one implies that the approximation naturally yields accurate prices and there is very
minimal or no correction required to the sub-basket option volatilities. However, a VCF
different to one implies that the true sub-basket option volatilities may be different to
the constant approximate volatility σ̃ and hence requires some correction.

Table 6.2 shows that the VCF is close to one for uncorrelated assets with relatively low
volatility (σ = 20%) implying that our approximate formula naturally works well for ATM
options under such cases. But for uncorrelated assets with relatively high volatility (σ =
50%) we have a VCF less than one (about 0.83–0.9) suggesting a downward correction
to the approximate sub-basket volatilities. The largest VCFs (about 1.5–1.7) are for
correlated assets with relatively low volatility (ρ = 0.5, σ = 20%) in which case the
sub-basket option volatilities are scaled up.

By construction, the error is very small for ATM options. Using the ATM-calibrated
values for the VCF also produces relatively small errors for ITM options, and when
pricing 3-year options the errors are generally less than when pricing 1-year options. The
largest errors are for 1-year OTM options. Here errors can exceed 10% of the simulated
price for options on uncorrelated assets. When the asset prices are correlated and the
basket option is a 3-year OTM basket call, our approximate prices are slightly greater
than the simulated prices, but in all other cases our approximation tends to over-price
slightly.

7 In practice, we could set the volatilities of the vanilla options that are ATM to be equal to the ATM
implied volatilities and the volatility of the vanilla option that has the same moneyness as the basket option
to a value implied from the skew. Similarly, we could use implied correlation matrix, if available from market
prices, or set it equal to some statistical estimate.
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TABLE 6.1
Five-Asset Basket Prices: Correlated GBM versus Weak Lognormal Approximation

T K r σ ρ Sim Price Std Error Approx Price VCF

1 90 0.05 0.2 0 14.6254 0.0011 15.6434 0.9896
1 90 0.05 0.2 0.5 15.6479 0.0005 17.0599 1.7002
1 90 0.05 0.5 0 18.3388 0.0062 18.3719 0.8950
1 90 0.05 0.5 0.5 22.8694 0.0029 24.1031 1.3935
1 90 0.1 0.2 0 18.6285 0.0012 19.4295 1.0136
1 90 0.1 0.2 0.5 19.2149 0.0006 20.2970 1.4921
1 90 0.1 0.5 0 21.2996 0.0065 21.3933 0.9017
1 90 0.1 0.5 0.5 25.3757 0.0031 26.6393 1.3593
1 100 0.05 0.2 0 6.8143 0.0009 6.8150 0.9896
1 100 0.05 0.2 0.5 8.8929 0.0004 8.8929 1.7002
1 100 0.05 0.5 0 12.6438 0.0054 12.6433 0.8950
1 100 0.05 0.5 0.5 17.8991 0.0028 17.8990 1.3935
1 100 0.1 0.2 0 10.307 0.0011 10.3068 1.0136
1 100 0.1 0.2 0.5 11.9199 0.0005 11.9199 1.4921
1 100 0.1 0.5 0 15.2241 0.0058 15.2236 0.9017
1 100 0.1 0.5 0.5 20.2037 0.0028 20.2036 1.3593
1 110 0.05 0.2 0 2.2074 0.0007 4.1564 0.9896
1 110 0.05 0.2 0.5 4.3969 0.0004 5.0478 1.7002
1 110 0.05 0.5 0 8.426 0.005 9.6427 0.8950
1 110 0.05 0.5 0.5 13.8766 0.0028 13.9065 1.3935
1 110 0.1 0.2 0 4.2398 0.0007 5.8384 1.0136
1 110 0.1 0.2 0.5 6.5267 0.0003 6.5727 1.4921
1 110 0.1 0.5 0 10.5148 0.0052 11.6391 0.9017
1 110 0.1 0.5 0.5 15.9268 0.0028 15.7634 1.3593
3 90 0.05 0.2 0 23.0121 0.0017 23.4937 0.95928
3 90 0.05 0.2 0.5 24.8104 0.0008 26.0281 1.38662
3 90 0.05 0.5 0 29.9998 0.0103 29.7121 0.83373
3 90 0.05 0.5 0.5 36.828 0.0057 37.7945 1.14902
3 90 0.1 0.2 0 33.3711 0.0018 33.7350 1.00713
3 90 0.1 0.2 0.5 34.0088 0.0008 34.7613 1.23057
3 90 0.1 0.5 0 37.2287 0.0107 36.9049 0.84556
3 90 0.1 0.5 0.5 42.7673 0.0058 43.6977 1.12109
3 100 0.05 0.2 0 15.678 0.0016 15.6782 0.95928
3 100 0.05 0.2 0.5 18.5798 0.0007 18.5799 1.38662
3 100 0.05 0.5 0 25.161 0.01 25.1607 0.83373
3 100 0.05 0.5 0.5 32.7054 0.0058 32.7049 1.14902
3 100 0.1 0.2 0 26.1671 0.0017 26.1664 1.00713
3 100 0.1 0.2 0.5 27.5462 0.0008 27.5463 1.23057
3 100 0.1 0.5 0 32.1145 0.0104 32.1141 0.84556
3 100 0.1 0.5 0.5 38.5906 0.0057 38.5907 1.12109
3 110 0.05 0.2 0 9.8016 0.0013 10.9059 0.95928
3 110 0.05 0.2 0.5 13.4902 0.0006 13.0938 1.38662
3 110 0.05 0.5 0 21.0184 0.0098 21.9056 0.83373
3 110 0.05 0.5 0.5 29.1034 0.0059 28.8132 1.14902
3 110 0.1 0.2 0 19.4368 0.0016 20.0164 1.00713
3 110 0.1 0.2 0.5 21.7596 0.0008 21.0829 1.23057
3 110 0.1 0.5 0 27.6233 0.0101 28.4547 0.84556
3 110 0.1 0.5 0.5 34.8364 0.0057 34.4549 1.12109
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The calibration algorithm described and illustrated above is just one possible model
calibration procedure. We recommended always adhering to our convention for choosing
the single-asset strikes in stage 1, as this will minimize the average calibration error over
all option strikes. However, for users seeking to increase pricing accuracy for OTM (ITM)
basket options, more than one VCF could be calibrated at stage 2, or a single VCF could
be calibrated to an OTM (ITM) basket option. Of course, our analytic formulae for the
Greeks will apply regardless of the calibration procedure chosen.

7. CONCLUSION

Most of the existing approaches to pricing basket options are based on approximating
the distribution of the basket price, or they are limited to pricing average price basket
options, or they apply only to options on a small number of assets. This paper develops
a recursive framework for pricing and hedging European basket options which has no
such constraints, and which may also be extended to rainbow options. Our key idea
it is write the option pay-off as a sum of pay-offs to CEOs on sub-basket options. By
writing the pay-offs to these sub-basket options in terms of pay-offs to CEOs on smaller
sub-baskets, and repeating, we can draw a pricing tree that applies to any given basket
option. This yields an approximate pricing formula for a general, N-asset basket option,
which expresses the basket option price in terms of the prices of 2(N − 1) CEOs and
2N standard option prices. Rainbow options may also be priced in this framework, as
the price of a rainbow option may be expressed in terms of a basket option price and
exchange option prices.

Our recursive procedure provides an almost exact price for certain options on baskets
containing no more than three assets, because they satisfy what we call the “strong” log-
normality condition where exact lognormal option price processes may be applied, under
a change of measure. For general N asset options the error stems from our approximation
of the price process of the options in the pricing tree as lognormal processes with constant
volatility, which is possible under a “weak” lognormality condition. Simulations have
tested the accuracy of our approximations for pricing various vanilla options, exchange
options, CEOs, spread options, and two-asset basket options. The results show that the
approximation errors are very small.

Then, we described how one can apply our option price recursion to compute basket
option prices. In general, the model calibration problem takes two stages: defining a
pricing tree and approximating the sub-basket option volatilities at each level in the tree.
We advocate the use of a tree based on 2(N − 1) ATM vanilla options and a pair of
vanilla call and put options with the same moneyness as the N-asset option. Then the
volatility approximation reduces to calibrating a single parameter to a given (simulated
or market) price for an ATM N-asset option. This way, the approximation error is
negligible for ATM options. Empirical examples have quantified the error for OTM and
ITM five-asset options.

Our recursive approach is quite novel, and has several advantages over those already
developed in the literature. First, the underlying asset prices may follow heterogeneous
lognormal processes. For instance, some asset prices could follow mean-reverting pro-
cesses whilst others follow standard lognormal processes. Second, our framework pro-
vides a convention for selecting the strikes of vanilla options in the pricing tree, and
the asset volatilities may therefore be consistent with the volatility skew. Third, model
calibration requires only one parameter to be calibrated to a single simulated ATM
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basket option price, which can be done in a few seconds; then simple analytic formulae
yield prices of ITM and OTM baskets and all deltas, gammas, and vegas. Most other
approaches are much more time consuming, requiring either many more simulations or
computations of multidimensional integrals.
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