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Abstract

A price process is scale-invariant if and only if the returns distribution is independent of the price
measurement scale. We show that most stochastic processes used for pricing options on financial
assets have this property and that many models not previously recognised as scale-invariant are
indeed so. We also prove that price hedge ratios for a wide class of contingent claims under a wide
class of pricing models are model-free. In particular, previous results on model-free price hedge
ratios of vanilla options based on scale-invariant models are extended to any contingent claim with
homogeneous pay-off, including complex, path-dependent options. However, model-free hedge
ratios only have the minimum variance property in scale-invariant stochastic volatility models when
price–volatility correlation is zero. In other stochastic volatility models and in scale-invariant local
volatility models, model-free hedge ratios are not minimum variance ratios and our empirical results
demonstrate that they are less efficient than minimum variance hedge ratios.
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1. Introduction

Do different option pricing models yield different hedge ratios? This important question
is related to model error in option pricing models, an issue that has been addressed by
Derman (1996), Green and Figlewski (1999), Cont (2006), Psychoyios and Skiadopoulos
(2006) and others. Another challenging question, related to work by Bakshi et al. (1997,
2000) and Lee (2001), is whether minimum variance hedge ratios perform better than stan-
dard price hedge ratios in dynamic hedging within a stochastic volatility setting. This
paper pursues the answer to these two questions by focussing on scale-invariant models
and proving four main results.

A multitude of models for option pricing have been developed in recent years and the
academic literature is enormous (see Jackwerth, 1999; Skiadopoulos, 2001; Bates, 2003;
Psychoyios et al., 2003; Cont and Tankov, 2004, for comprehensive reviews). However,
our first result implies that the vast majority of models share the common property of
being scale-invariant. A price process is scale-invariant if and only if the asset price returns
distribution is independent of the price measurement scale. The first result allows models
to be classified as scale-invariant or otherwise without deriving the returns density. This is
important because the returns distribution for many models is not known in analytic form.
Thus it broadens the scale-invariant class to encompass models that have not previously
been acknowledged as scale-invariant.

Two further results will prove that the price hedge ratios of virtually any claim are
model-free, and any difference between the empirically observed hedge ratios can only
be attributed to a different quality of the models’ fit to market data. More precisely, the
standard delta, gamma and higher order price hedge ratios are model-free in the class
of scale-invariant models provided only that the claim’s expiry pay-off is homogeneous
of some degree in the price, strike and any other claim characteristic in the price dimen-
sion. Almost all claims in current use have such a homogeneity property.

Vanilla options (i.e. standard European and American calls and puts) have expiry pay-
offs that are homogeneous of degree one in the underlying price and strike. Merton (1973)
showed that when such options are priced under a scale-invariant process their prices at
any time prior to expiry are also homogeneous of degree one. Our second result extends
this property to other claims with homogeneous pay-offs: Suppose the expiry pay-off of
a claim is homogeneous of degree k in the underlying price, strike and every other param-
eter in the price dimension (e.g. a barrier). Then, when priced under a scale-invariant pro-
cess, the price at any time prior to expiry of the claim is also homogeneous of degree k. In
other words, the prices of most path-dependent options, such as barriers, Asians, look-
backs and forward starts, and the prices of options with pay-offs that are homogeneous
of degree k 5 1 such as binary options and power options, at any time prior to expiry,
have the same degree of homogeneity as their pay-off functions when they are priced under
a scale-invariant process.

Bates (2005) proved that if an option price is homogeneous of degree one in the underlying
price and strike then its standard delta and gamma are model-free in the class of scale-invari-
ant processes. Our third result extends this model-free property: to options with pay-off func-
tions that are homogeneous of any degree k in the price dimension, to higher-order price
hedge ratios, and to include other characteristics in the price dimension, such as barriers.

Our fourth result is related to minimum variance hedging. The minimum variance (MV)
hedge ratio is that ratio which minimizes the variance of the hedged portfolio. See Bakshi
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et al. (1997, 2000) for applications. Building on the work of Schweizer (1991), Frey (1997)
and Lee (2001) we derive explicit expressions for the minimum variance delta and gamma
of some standard option pricing models. We then show that model-free scale-invariant
hedge ratios only have the MV property when there is zero correlation between the price
and another (possibly stochastic) component in the model such as volatility or interest
rates. Otherwise, to be MV the standard hedge ratio requires a simple adjustment that
depends on this correlation.

An empirical study of standard European options on the S&P 500 index indicates that
extending the definition of delta and gamma from simple partial derivatives to the MV
hedge ratios mentioned above yields a major improvement in dynamic hedging perfor-
mance. However, we find no significant difference between the performances of different
MV hedges. Finally, our results are not conclusive about the superiority of MV hedge
ratios over the Black–Scholes (1973) delta–gamma hedge.

The rest of this paper is structured as follows. Section 2 proves our first two results on
the classification of scale-invariant option pricing models and the preservation of homo-
geneity by scale-invariant processes; Section 3 proves our third result on the model-free
delta and gamma of European and American claims, knowing only that their expiry
pay-off is homogeneous of degree k in the price dimension, and derives expressions for
the minimum variance delta and gamma of some option pricing models; Section 4 presents
the results of the empirical study and Section 5 concludes.

2. Scale-invariant models and their properties

Let St denote the price at time t of the contract underlying a contingent claim and
denote the relative price at time t by Xt = St /S0. A price process S = (St)tP0 is defined
as scale-invariant if and only if the marginal distribution of Xt is independent of S0 for
all t P 0 that is

optðxÞ
oS0

¼ 0 for all t P 0; ð1Þ

where ptðxÞ ¼ d
dx P ðX t < xÞ is the probability density of Xt.

In other words, S is scale-invariant if and only if the returns density is independent of
the price dimension. Merton (1973) identified this ‘constant returns to scale’ property as a
desirable feature for pricing options. He also showed that if the probability density of the
underlying asset returns is invariant under scaling then the price of a standard American
or European option scales with the underlying price. Put another way, it does not matter
whether the asset price is measured in dollars or in cents – the relative value of an option
should remain the same.1
1 Hoogland and Neumann (2001) consider scale invariance as a parallel to a change of numeraire, but we regard
scale invariance as the invariance of the returns density under a change in the unit of measurement of the
underlying price. This is not the same as a change of numeraire. The price of every asset in the economy changes if
we change the numeraire, whilst for our purposes scale invariance refers only to a change in the unit for
measuring the underlying price and everything else that is in the same dimension as this price, such as an option
strike or barrier. A simple example is a stock split. After the split, the value of the stock and the strike price of any
option on this stock will be scaled, but the prices of the remaining assets in the economy (e.g. bonds) are not
changed. For a review of this and other general properties of option prices, including bounds for hedge ratios,
refer to Merton (1973), Cox and Ross (1976), Bergman et al. (1996) and Bakshi and Madan (2002).
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The theorem below shows that almost all of the models for pricing options on financial
assets that are in common use are scale-invariant, however most interest rate models are
not scale-invariant. The proof of this and other theoretical results are given in the
Appendix.

Theorem 1. A price process S = (St)tP0 is scale-invariant if it is a semi-martingale and can be

written in the form

dS
S
¼ H0 dK; ð2Þ

where H is a vector of random or deterministic coefficients that are independent of the unit of

price measurement and K = (Kt)tP0 is a vector of factors driving the asset price that contains

the time t, Wiener processes and/or jump processes.

It is easy to see that several classes of models are scale-invariant because they satisfy the
general form (2). The price process does not even need to be Markovian. Bates (2005)
observes that Merton’s (1976) jump-diffusion and most stochastic volatility models, even
with stochastic interest rates, are scale-invariant. Theorem 1 allows further models to be
classified as scale-invariant including: mixture diffusions (such as in Brigo and Mercurio,
2002), uncertain volatility models (Avellaneda et al., 1995), double jump models (Naik,
1993; Duffie et al., 2000; Eraker, 2004), and Lévy processes (Schoutens, 2003) if the drift
and Lévy density are dimensionless. Option pricing models that are not scale-invariant
include: models based on arithmetic Brownian motion and its extensions (e.g. Cox
et al., 1985) that are commonly applied to interest rate options; deterministic volatility
models in which the instantaneous volatility is a static function of the asset price (e.g.
Cox, 1975; Dumas et al., 1998); and the ‘implied tree’ local volatility models of Dupire
(1994), Derman and Kani (1994) and Rubinstein (1994) where the diffusion coefficient
in (2) depends on the price level. Hybrid models that mix local volatility with stochastic
volatility or jumps (e.g. Hagan et al., 2002; Carr et al., 2004) are typically not scale-invari-
ant because of the local volatility component.

Now consider an arbitrary claim on S with expiry T and characteristics K 0 =
(K1, . . . ,Kn) in the same unit of measurement of S, such as strikes and barriers. The claim
may itself be a portfolio of other claims on S, e.g. a straddle, butterfly spread, etc. Without
loss of generality we assume the claim characteristics are known constants and we omit
variables such as interest rates, dividends and other model parameters because these are
of lesser importance for price hedging. We therefore denote its price at time t, with
0 6 t 6 T, by g(T,K; t,S).
Theorem 2. A price process is scale-invariant if and only if it preserves the homogeneity of a

claim pay-off at expiry throughout the life of the claim.

Many types of options have homogeneous pay-off functions. Pay-offs that are homo-
geneous of degree zero include the log-contract and binary options.2 Power options are
homogeneous of degree k > 1.3 But most claims have pay-off functions that are homo-
2 The log contract pays ln(ST /S0) at expiry and a binary option pays 1fST>Kg for a call or 1fK>ST g for a put.
3 For instance those with pay-off [(ST � K)k]+.
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geneous of degree one, including standard options, cash-or-nothing and asset-or-nothing
options and many path-dependent options such as look-backs, single and multiple
barrier options, average-rate and average-strike options, forward start and cliquet
options and compound options.4 Theorem 2 shows that when a scale-invariant process
is used to value any of the claims mentioned above, the claim price at any point in time
before expiry will be homogeneous and has the same degree of homogeneity as its pay-
off.

To classify option pricing models as scale-invariant or otherwise when neither the
returns density nor the price process are known in analytic form, it is useful to con-
sider the following corollary to Theorem 2. Let h (T,K; t,S) denote the implied volatil-
ity of a standard European option with maturity T and strike K, and r̂ðT ; K; t; SÞ
denote the local volatility for future time T and price K, both seen from time t when
St = S.

Corollary 1. The following properties are equivalent for all T and K:

(i) S is generated by a scale-invariant process;

(ii) hðT ; K; t; SÞ ¼ hðT ; uK; t; uSÞ u 2 Rþ;
(iii) r̂ðT ; K; t; SÞ ¼ r̂ðT ; uK; t; uSÞ u 2 Rþ:
The corollary shows that a model is scale-invariant if and only if the implied volatility
and the local volatility are both homogeneous functions of degree zero in S and K, a prop-
erty that is sometimes called the ‘floating-smile’. Note that all scale-invariant models share
these volatility characteristics, not just scale-invariant local volatility models. Applying
Euler’s theorem to property (ii) shows that every scale-invariant model has the same
implied volatility sensitivity to S

hSðT ; K; t; SÞ ¼ � K
S

� �
hKðT ; K; t; SÞ; ð3Þ

where hK is the slope of the implied volatility smile in the strike metric. We note that Bates
(2005) also derived the identity (3).
3. Hedging with scale-invariant models

Bates (2005) showed that if at some time t, 0 6 t 6 T, the price of an option is homo-
geneous of degree one in S and K, then every scale-invariant process gives the same option
delta and gamma at time t. The theorem in this section extends and generalises Bates’
result by showing that all price sensitivities of an arbitrary claim are model-free within
4 Pay-offs are defined as follows: Standard options: e.g. a vanilla call pays (ST � K)+; Cash-or-nothing options:
K1fST>Kg for a call; Asset-or-nothing options: ST 1fST>Kg for a call; Look-back options: e.g. (ST � Smin)+; Barrier
options: e.g. ðST � KÞþ1fSt<B;06t6T g is a single barrier up-and-out call. Multiple barrier options are also
homogeneous of degree one; Asian options: e.g. (AT � K)+ where AT is an average of prices prior to and at expiry;
Compound options: e.g. (C (T1,T2) � K)+ where C (T1,T2) is the value of a vanilla call at time T1 with expiry date
T2 > T1; Forward start options: e.g. ðST 2

� ST 1
Þþ, where the strike is set as the at-the-money strike at T1 < T2.

Cliquet options are a series of forward start options and are therefore also homogeneous of degree one.
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the class of scale-invariant process, provided only that the claim pay-off at expiry is homo-
geneous of degree k in the price dimension.5
3.1. The model-free property

The next theorem implies that if prices of claims of the same type are observable in the
market, then so are the price hedge ratios of these claims. More precisely, any two scale-
invariant models yield the same price hedge ratios for a claim with homogeneous pay-off
and characteristics K if the same claim prices are used to calibrate the models and if both
models fit these prices exactly. A perfect fit to market prices is not always attainable in
practice, but if two scale-invariant models fit the data reasonably well then no significant
difference between the empirical hedging performances of the models should be observed.

Theorem 3. Suppose the claim pay-off is homogeneous of degree k and that S is generated by

a scale-invariant process. Then all partial derivatives of the claim price with respect to S at

any time t < T are given by linear combinations of g = g(T,K;t,S) and its partial derivatives

with respect to K, and in particular

gS ¼ S�1ðkg � K0gKÞ
gSS ¼ S�2½K0gKKKþ ðk � 1Þðkg � 2K0gKÞ�:

ð4Þ

Applying the theorem to standard European options: if two scale-invariant models are
calibrated to the same market prices, both models should give the same delta and the same
gamma for the options, because the price sensitivities to K can be computed directly from
the market prices. The theorem also applies to path-dependent options: for instance, if two
scale-invariant models are calibrated to the same market prices of barrier options both
models should give the same price hedge ratios for these barrier options. Empirically, there
will be differences between the delta and gamma obtained using the two models but this is
due to the fact that the models do not fit market data equally well. On the other hand, if a
model is calibrated to standard European calls and puts and then used to price and hedge
path-dependent options such as barrier or cliquet options, the price and the price sensitiv-
ities of the path-dependent options will be model-dependent. When the prices of the path-
dependent options are not observable in the market and are given by the model, both price
and price hedge ratios are model-dependent.
3.2. Minimum variance hedge ratios

So far we have defined delta and gamma as the usual partial derivatives of the claim price
with respect to the underlying price. However, when there are extra dynamic features in the
model such as stochastic volatility or stochastic interest rates, these might not be the most
efficient hedge ratios to use in a delta or delta–gamma hedging strategy. This sub-section
5 In Theorem 3 all claim prices and derivatives of these prices are functions of (T,K; t,S) but we have dropped
this dependence for ease of notation. Also (gK)nx1 is the gradient vector of partial derivatives and (gKK)nxn is the
Hessian matrix of second partial derivatives of g with respect to K, all evaluated at time t when S = St. Finally K 0

denotes the transpose of K.
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investigates when the model-free hedge ratios of scale-invariant models given by Theorem 3
and the minimum variance hedge ratios coincide.

We define the minimum variance (MV) delta, dmv, as the amount of the underlying asset
at time t that minimizes the instantaneous variance of a delta-hedged portfolio,
P = g � dmv S, or equivalently, that reduces the instantaneous covariance of the portfolio
with the underlying asset price S to zero6

hdP; dSi ¼ hdg � dmvdS; dSi ¼ hdg; dSi � dmvhdS; dSi ¼ 0; ð5Þ
where hÆ,Æi denotes the instantaneous covariance between two random variables. As before,
we drop the dependence of P, g and dmv on (T,K; t,S) for ease of notation.

In the Black–Scholes model, the MV delta is the same as the first partial derivative of
the claim price with respect to S, but this is not the case when any model component such
as the volatility or interest rate is correlated with the asset price. Suppose the spot volatility
(or variance) is a continuous and stochastic process itself and there are no jumps. Then the
dynamics of the claim price g = gsv(T,K; t,S,r) according to the stochastic volatility (SV)
model are given by Itô’s formula as

dg ¼ gt dt þ gS dS þ gr drþ 1
2
gSS dS2 þ 1

2
grrdr2 þ gSr dS dr; ð6Þ

where the subscripts of g denote partial differentiation. In a stochastic volatility model
without jumps the MV delta, dsv

mv, is the ratio of the instantaneous covariance between
increments in the claim price and the underlying price and the instantaneous variance
of the increments in the underlying price. Therefore, since the quadratic terms in (6) are
adapted processes of order dt,

dsv
mvðT ; K; t; S; rÞ ¼ hdg; dSi

hdS; dSi ¼
hgS dS þ grdr; dSi

hdS; dSi ¼ gS þ gr

hdr; dSi
hdS; dSi : ð7Þ

Intuitively, this resembles a total derivative of the claim price with respect to S, in which
the total derivatives are defined as

dg
dS
� hdg; dSi
hdS; dSi and

dr
dS
� hdr; dSi
hdS; dSi ð8Þ

and

dsv
mv ¼

dg
dS
¼ gS þ gr

dr
dS
: ð9Þ

Thus, the MV delta in a stochastic volatility model is the standard delta plus an addi-
tional term that is non-zero only when the two Brownian motions driving price and the
volatility are correlated.
6 This is also known as local risk minimization, and has been studied extensively in the context of incomplete
markets by Schweizer (1991), Bakshi et al. (1997), Bakshi et al. (2000), Frey (1997), Lee (2001) and others. The
advantage of using minimum variance hedge ratios is their tractability and intuition. However, like other
quadratic hedging strategies, minimum variance hedging treats losses and gains in a symmetric manner and one
may prefer an alternative hedging strategy, such as super-hedging or utility maximization. Refer to Cont and
Tankov (2004, chapter 10) for a review. Our definition of the minimum variance hedge ratio is consistent with the
definition of the minimum variance futures hedge ratio suggested by Johnson (1960) and Ederington (1979).
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The MV gamma, csv
mv, can be derived by setting

hddsv
mv � csv

mv dS; dSi ¼ 0) csv
mv ¼

hddsv
mv; dSi

hdS; dSi ð10Þ

and applying Itô’s formula to dsv
mvðT ; K; t; S; rÞ to obtain

csv
mv ¼

d2g

dS2
¼ ðdsv

mvÞS þ ðd
sv
mvÞr
hdr; dSi
hdS; dSi

¼ gSS þ 2gSr

dr
dS
þ grr

dr
dS

� �2

þ gr

d2r

dS2

 !
; ð11Þ

where the second-order total derivative on the right-hand side is interpreted as

d2r

dS2
� dr

dS

� �
S

þ dr
dS

� �
r

dr
dS
: ð12Þ

We conclude that in stochastic volatility models with uncorrelated Brownian motions
(e.g. Hull and White, 1987; Nelson, 1990; Stein and Stein, 1991; and others) the MV delta
is equal to the standard delta and if these models are also scale-invariant, the MV delta is
model-free and equal to the standard delta.

The same observation holds true for the gamma. But this is not true for stochastic vol-
atility models with non-zero price–volatility correlation. For instance the Heston (1993)
model

dS
S
¼ ldt þ

ffiffiffiffi
V
p

dB

dV ¼ aðm� V Þdt þ b
ffiffiffiffi
V
p

dZ hdB; dZi ¼ qdt
ð13Þ

is scale-invariant.7 Hence

dheston
mv ¼ gS þ gV

hb
ffiffiffiffi
V
p

dZ; S
ffiffiffiffi
V
p

dBi
hS

ffiffiffiffi
V
p

dB; S
ffiffiffiffi
V
p

dBi
¼ gS þ gV

qb
S

� �

cheston
mv ¼ gSS þ

qb
S

qb
S

gVV þ 2gSV �
1

S
gV

� � ð14Þ

and the only model-dependent part of the hedge ratio is the second term on the right-hand
side. In the case of equity options, when q is typically negative, the Heston MV delta is
lower (greater) than the model-free delta if the vega gV is positive (negative). This implies
that the model-free delta over-hedges (under-hedges) equity options relative to the MV
delta, and should be less efficient for pure delta hedging.

More generally, the MV delta and gamma account for the total effect of a change in
the underlying price, including the indirect effect of the price change on the claim price
via its effect on the volatility (or any other parameter that is correlated with the underlying
price).
7 The variance process is correlated with the price process but it is independent of the scale of the price. Henceffiffiffiffi
V
p

is dimensionless and the Heston model is scale-invariant. This follows from Theorem 1. The derivation of the
returns density is not necessary to verify that the model is scale-invariant.
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3.3. Local volatility hedge ratios

Now consider the hedge ratios for local volatility (LV) models, scale-invariant or other-
wise. As these models do not introduce new sources of uncertainty, the dynamics of the
claim price g = glv(T,K; t,S) are given by

dg ¼ gt dt þ gS dS þ 1
2
gSS dS2 ð15Þ

(c.f. (6) for stochastic volatility models) and the local volatility hedge ratios are the stan-
dard (partial derivative) hedge ratios

dlvðT ; K; t; SÞ ¼ hdg; dSi
hdS; dSi ¼

hgS dS; dSi
hdS; dSi ¼ gS

clvðT ; K; t; SÞ ¼ hddlv; dSi
hdS; dSi ¼ gSS :

ð16Þ

These are the minimum variance hedge ratios for any local volatility model in which the
instantaneous volatility is a static function of t and S (e.g. Cox, 1975; Dumas et al., 1998;
and others) and in particular for implied tree models (e.g. Derman and Kani, 1994; Rubin-
stein, 1994). But note that such models are not scale-invariant.

In scale-invariant local volatility models, the instantaneous volatility is dimensionless
and is typically a function of S/S0. This implies that the local volatility surface is static
with respect to S/S0 rather than with respect to S. The surface ‘floats’ with the asset price.
As a result, the hedge ratios in (16) are not the minimum variance ratios because move-
ments in the local volatility surface are correlated with movements in the underlying asset.
The solution is to treat the local volatility model as a stochastic volatility model with per-
fect price–volatility correlation, as follows.

In the stochastic volatility case, the second source of randomness from the volatility
process motivates the adjustment to the hedge ratios shown in (9) and (11); but in local
volatility models there is just one source of randomness. Nevertheless, because the instan-
taneous volatility r(t,S) in a local volatility model is a deterministic function of t and S, it
is also a continuous process and it has dynamics given by Itô’s formula as

dr ¼ rt dt þ rS dS þ 1
2
rSS dS2 ¼ rt þ 1

2
r2S2rSS

� �
dt þ rS dS ð17Þ

which can be interpreted as a stochastic volatility model with perfect correlation between
the instantaneous volatility and the underlying asset price.

Now using (9) and (11) the MV local volatility hedge ratios of the claim price
ĝ ¼ glvðT ; K; t; S; rÞ are

dlv
mv ¼ ĝS þ ĝrrS

clv
mv ¼ ĝSS þ ð2ĝSrrS þ ĝrrðrSÞ2 þ ĝrrSSÞ:

ð18Þ

The difference between (18) and the hedge ratios (16) is that in (18) the partial derivatives
of the claim price with respect to S are computed while keeping the volatility r constant. If
r is an explicit parameter of the model the partial derivatives ĝr, ĝSr and ĝrr are well-de-
fined. Otherwise, it may be possible to re-parameterize the model in terms of this. This dis-
tinction is important because the hedge ratios from scale-invariant local volatility models
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are model-free, by Theorem 3, and they are different from the MV hedge ratios (18) just as
the Heston hedge ratios are different from the MV ratios (14) when there is price–volatility
correlation.

4. Empirical results

This section compares the hedging performance of a selection of option pricing models
using the standard delta and gamma and the MV hedge ratios. On testing the model-free
hedge ratios from different scale-invariant models no significant difference between the
model’s performances was found. We have therefore used the Heston (1993) model as a
representative scale-invariant model. Its delta and gamma are model-free but if the
price–volatility correlation is non-zero the MV hedge ratios (14) will be different from
the model-free hedge ratios. The CEV model (Cox, 1975) is included because it is not
scale-invariant and hence has the potential to generate significantly different results. Its
standard hedge ratios are not model-free, but they are equal to the MV hedge ratios given
by (16). Finally, the Black–Scholes (BS) hedge ratios are used as a benchmark.

4.1. Data

Bloomberg data on the June 2004 European call options on the S&P 500 index, i.e.
daily close prices from 16 January 2004 to 15 June 2004 (101 business days) for 34 different
strikes (from 1005 to 1200), have been applied in this study. Only the strikes within ±10%
of the current index level were used for the model’s calibration each day but all strikes
were used for the hedging strategies. Implied volatilities are computed from mid prices
(i.e. the average of bid and ask option prices). Options whose mid prices were below
the intrinsic value or unrealistic were discarded. Time series of daily USD Libor rates were
downloaded from the British Bankers Association (BBA) website for several maturities
and used as a proxy for the risk-free rate. Linear interpolation was applied to produce
a continuous function of the Libor rate with respect to time to maturity. This procedure
was repeated for every date in the sample. Dividend yields were calculated by inverting the
arbitrage-free pricing formula for a futures contract, i.e. F = Se(r�q)(T�t), where for all
t < T, S and F are the close values of the S&P 500 index and of the S&P 500 futures with
expiry in June 2004, respectively. The calculation of the dividend yield is not exact since
the S&P 500 futures market closes 15 min later than the spot market. However the impact
from the measurement error of the dividend yield is negligible in equity markets, and for
short maturities in particular. During the period, no trend was observed for the S&P 500
index: the average daily return was only 0.02% with an annualised standard deviation (vol-
atility) of 11.96%.

The delta hedge strategy consists of one delta-hedged short call on each available strike,
rebalanced daily. That is, one call on each of the 34 strikes from 1005 to 1200 is sold on
16th January (or when the option is issued, if later than this) and hedged by buying an
amount d (delta) of the underlying asset, where d is determined by both the model and
the option’s characteristics. The portfolio is rebalanced daily, assuming zero transaction
costs, stopping on 2nd June because from then until the expiry date the fit to the smile
worsened considerably for the models considered here. The delta–gamma hedge strategy
again consists of a short call on each strike, but this time an amount of the 1125 option,
which is closest to at-the-money in general over the period, is bought. This way the gamma
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on each option is set to zero and then we delta hedge the portfolio as above. This option-
by-option strategy on a large database of liquid options allows one to assess the effective-
ness of hedging by strike or moneyness of the option, and day-by-day as well as over the
whole period. A data set of P&L (profit and loss) with 1324 observations is obtained.
4.2. Calibrated hedge ratios

Each model was calibrated daily by minimizing the root-mean-square-error between the
model implied volatilities and the market implied volatilities of the options used in the cal-
ibration set. We used the closed-form solution for the Heston model based on Fourier
transforms (Lewis, 2000), chose a risk-aversion parameter of zero and set the long-term
volatility at 12%.8 The calculation of the CEV hedge ratios is based on the non-central
chi-square distribution result of Schroder (1989). For the BS model, the deltas and gammas
are obtained directly from the market data and there is no need for model calibrations.

The deltas and gammas of each model, whilst changing daily, exhibit some strong pat-
terns when they are plotted by strike or by moneyness: the same shapes emerge day after
day. In Fig. 1a and b we compare the deltas and gammas from the different models on 21st
May 2004, a day exhibiting typical patterns for the models’ delta and gamma of S&P 500
call options. In Fig. 1a, the scale-invariant model-free delta is greater than the BS delta for
all but the very high strikes. So if the BS model over-hedges in presence of the skew (as
shown by Coleman et al., 2001) then scale-invariant models should perform worse than
the BS model. A different picture emerges when MV hedge ratios are used. In the CEV
model, where the MV hedge ratios are the same as the standard hedge ratios (see Section
3.3), and in the Heston model, where the MV hedge ratios are the model-free hedge ratios
adjusted according to (14), the MV deltas are generally lower than the BS deltas. Another
pattern is observed in Fig. 1b for the gammas. The model-free gammas are lower than the
BS gamma for in-the-money calls and greater than the BS gamma for out-of-the-money
calls (except for very deep out-of-the-money calls) while the opposite is observed when
MV gammas are considered. So partial price sensitivities will under-hedge/over-hedge
the gamma risk for in-the-money/out-of-the-money calls respectively, relative to the BS
hedges.
4.3. Distribution of hedging profit and loss

Table 1 reports the sample statistics of the aggregate daily P&L for each model, over all
options and over all days in the hedging period. The models are ordered by the standard
deviation of the daily P&L. Small skewness and excess kurtosis in the P&L distribution are
also desirable – high values for these sample statistics indicate that the model was spectac-
ularly wrong on a few days in the sample. Another important performance criterion is that
8 In Lewis (2000) pricing formula, a risk-aversion parameter of 0 implies a logarithmic utility for the investor,
whilst risk neutrality requires a parameter of 1. The investor’s risk aversion is irrelevant for the calculation of the
standard delta and gamma in the Heston model (because these are model-free) but it may influence the MV
hedging performance. Nevertheless, the calibration of the model under different assumptions for the risk-aversion
parameter did not produce significantly different MV hedge ratios (results available from Authors on request).
Hence the risk-aversion parameter appears to be of lesser importance for hedging than the correlation coefficient.
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Fig. 1. The models’ delta and gamma by moneyness on May 21st 2004 for S&P 500 call options: (a) shows the
minimum variance (MV) delta of the Heston model, the model-free delta of scale-invariant (SI) models, and
the deltas of the Black–Scholes (BS) and CEV models (for which the standard deltas are also MV). (b) shows the
corresponding gammas. In each figure, the hedge ratios are drawn as functions of K/S and May 21st was chosen
as a day when all the hedge ratios exhibited their typical pattern. The SI deltas are greater than the BS deltas in
general, whilst the minimum variance deltas (CEV and Heston (MV)) are typically lower than the BS deltas. The
SI gammas are lower than the BS gamma for low strike options and greater than the BS gamma for high strike
options (except for exceptionally high strikes) while the opposite is observed when MV gammas are considered.
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the P&L be uncorrelated with the underlying asset. In our case, over-hedging would result
in a significant positive correlation between the hedge portfolio and the S&P 500 index
return. We have therefore performed a regression, based on all 1324 P&L data points,
where the P&L for each option is explained by a quadratic function of the S&P 500



Table 1
Sample statistics of the aggregate daily P&L for delta hedging

Model Mean Std. Dev. Skewness Excess Kurtosis R2

(a) Delta hedging

CEV 0.1462 0.5847 �0.3424 0.7820 0.113
Heston (MV) 0.1370 0.6103 �0.5704 1.6737 0.152
BS 0.1401 0.7451 �0.7029 2.0370 0.412
SI 0.1373 1.1788 �0.5928 1.4834 0.693

(b) Delta–gamma hedging

BS �0.0014 0.2612 �0.4353 2.5297 0.020
CEV 0.0098 0.2691 �0.0291 3.0850 0.051
Heston (MV) 0.0111 0.2789 0.1929 3.6019 0.029
SI 0.0428 0.4548 0.0208 4.0123 0.060

This table reports the sample statistics of the aggregate daily P&L for each model, over all options and over all
days in the hedging period, for the delta and delta–gamma hedging strategies with daily rebalancing. The models
are ordered by the standard deviation of the daily P&L. Small skewness and excess kurtosis are desirable. We also
performed a regression, based on all 1324 P&L data points, where the P&L for each option is explained by a
quadratic function of the S&P 500 returns. The R from this regression, reported in the last column of the table, is
small when the hedge is effective. The models are BS (Black and Scholes, 1973), CEV (constant elasticity of
variance of Cox, 1975), Heston (MV) (the Heston model using minimum variance hedge ratios) and SI (using the
model-free hedge ratios of scale-invariant models).
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returns. The lower the R2 from this regression, reported in the last column, the more effec-
tive the hedge.

According to these criteria, the best delta hedges are obtained from the MV hedge
ratios, irrespective of the underlying model used. The MV deltas yield lower standard devi-
ations than the BS delta, and these also have P&L that are closest to being normally
distributed according to the observed skewness and excess kurtosis. Conversely, the
model-free deltas perform worse than the BS delta. Apart from this, the positive mean
P&L for delta hedging is a result of the short volatility exposure and gamma effects, since
we have only rebalanced daily (see also Bakshi et al., 1997, and Lee, 2001). The delta–
gamma hedging results in part (b) of Table 1 show a mean P&L that is close to zero.
On adding a gamma hedge it is remarkable that the BS model performance improves con-
siderably, whilst the other models ranked more or less as before.

One possible explanation for the superiority of the BS model in Table 1b is that the
same hedging strategy is used to gamma hedge or vega hedge vanilla options: the ratio
of the gammas is equal to the ratio of the vegas in the BS model. This is evidence that most
of the imperfections of the BS model can be dealt with by hedging the movements in
implied volatility. In fact, Bakshi et al. (1997) also find that vega hedging with the BS
model performs well except for low strike in-the-money call options.

Results on hedged portfolio P&L standard deviation by moneyness, averaged over all
days in our sample are given in Table 2. This table shows that the apparent superiority of
the BS model for delta–gamma hedging is due to its success at hedging the strikes slightly
higher than at-the-money. This may be linked to our finding in Fig. 1 that the BS gamma is
similar to the MV gammas for near-the-money options. For out-of-the-money calls, the
MV hedge ratios from the Heston model give the lowest standard deviation of hedged
portfolio P&L. Hedging performance is particularly bad when the model-free hedge ratios
are used.



Table 2
Standard deviation of the daily P&L aggregated by moneyness of option

K/S 0.90–0.95 0.95–1.00 1.00–1.05 1.05–1.10 1.10–1.15

(a) Delta hedging

Best Heston (MV) 0.3714 CEV 0.5740 CEV 0.6372 CEV 0.6051 Heston (MV) 0.5507
CEV 0.3854 Heston (MV) 0.6161 Heston (MV) 0.6629 Heston (MV) 0.6202 CEV 0.5602
BS 0.5652 BS 0.7876 BS 0.7844 BS 0.6921 BS 0.5917

Worst SI 0.7357 SI 1.2055 SI 1.2691 SI 1.0283 SI 0.7746

(b) Delta–gamma hedging

Best Heston (MV) 0.1801 CEV 0.2358 BS 0.2531 Heston (MV) 0.2907 Heston (MV) 0.3134
CEV 0.1853 BS 0.2561 CEV 0.3040 CEV 0.2923 CEV 0.3222
BS 0.2012 Heston (MV) 0.2594 Heston (MV) 0.3132 BS 0.2929 BS 0.3597

Worst SI 0.3214 SI 0.3695 SI 0.4271 SI 0.5277 SI 0.5175
# Options 141 476 435 217 55

This table reports the standard deviation of daily P&L for each model, aggregated over all options of a given moneyness and over all days in the hedging period, for
the delta and delta–gamma hedging strategies, with daily rebalancing. According to this criterion, the Black–Scholes (BS) model performs best only for the delta–
gamma hedging of near at-the-money options. The model-free hedge ratios of scale-invariant (SI) models perform worst irrespective of the option moneyness or
hedging strategy. The minimum variance hedge ratios (CEV and Heston (MV)) perform best and only a small difference between their hedging performances is
observed. Table 3 shows that this difference is not significant.
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The hedging performance of the Heston model has also been considered by Bakshi
et al. (1997) and Nandi (1998), among others, and their findings agree with the results
reported above.9 Nandi (1998) investigates the importance of the correlation coefficient
in the Heston model and concludes that the model’s delta–vega hedging performance is
significantly improved when the correlation coefficient is not constrained to be zero. That
paper also finds that, after taking into account the transactions costs (bid-ask spreads) in
the index options market and using S&P 500 futures to hedge, the stochastic volatility
model outperforms the Black–Scholes model only if correlation is not constrained to be
zero.

Bakshi et al. (1997) consider minimum variance delta hedging and ‘delta-neutral’
hedging (using as many hedging instruments as there are sources of risk, except for jump
risk) and compare the hedging performance of models that include stochastic volatility,
jumps and/or stochastic interest rates. They find that a stochastic volatility model such
as Heston (1993) is adequate for price hedging. In fact, once stochastic volatility is mod-
elled, the inclusion of jumps leads to no discernable improvement in hedging perfor-
mance, at least when the hedge is rebalanced frequently, because the likelihood of a
jump during the hedging period is too small. They also find that the inclusion of sto-
chastic interest rates can improve the hedging of long-dated out-of-the-money options,
but for other options stochastic volatility is the most important factor to model.
4.4. Testing for differences between the models

Fig. 2a and b plot the cumulative distribution functions of the hedging P&L, taken
over all options and over all days in the sample. Fig. 2a depicts the P&L from delta hedg-
ing only and Fig. 2b depicts the P&L from delta–gamma hedging. In both charts, there
are two distinct groups: the MV hedging strategies (CEV and Heston (MV)) and the
hedging strategies based on the (model-free) hedge ratios of any scale-invariant (SI)
model that fits the market option prices. The former group is more efficient because
it produces a P&L distribution that is less dispersed around the mean. The BS model
lies in between the two groups in (a) and very close to the MV hedges in (b). The
P&L for delta–gamma hedging with the SI models is also slightly shifted to the right.
These findings are consistent with Table 1, which reports the moments of the same
distributions.

Applying a Kolmogorov–Smirnoff test (Massey, 1951; Siegel, 1988) to these distribu-
tion functions yields the results in Table 3. The null hypothesis is that the two P&L
distributions are the same and the Kolmogorov–Smirnoff statistic is asymptotically v2

distributed with two degrees of freedom. Significant values at the 10%, 5% or 1% levels
are marked with one, two or three asterisks, respectively. The results confirm our
theoretical findings. There are very significant differences between the P&L from MV
deltas and gammas and the P&L from the model-free deltas and gammas. However,
no significant difference is found between the two MV strategies for delta and for
delta–gamma hedging. Both CEV and Heston models provide an effective delta or
9 Bakshi et al. (2000) start from the general SVSI-J model (Bakshi et al., 1997) and, by fixing some of the model
parameters, they investigate the performance of alternative models for pricing and hedging options of different
maturities. The SVSI-J model is scale-invariant. As a result, the standard deltas for the specific models considered
there (SV, SVSI and SVJ) are model-free and should be equal if the models fit the same option prices.
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Fig. 2. Cumulative distribution functions of the hedging P&L, taken over all options and over all days in the
sample: In both charts there are two distinct groups: the minimum variance (MV) hedging strategies (CEV and
Heston (MV)) and the non-MV hedging strategies based on the model-free hedge ratios of scale-invariant (SI)
models. The former group is more efficient because it produces a P&L that is less dispersed. The BS model lies in
between the two groups in (a) and very close to the MV hedges in (b). (a) Delta Hedge P&L c.d.f. (b) Delta–
Gamma Hedge P&L.
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delta–gamma hedge for S&P 500 call options. Finally, the differences between the BS
P&L and the P&L from the MV hedge ratios are significant for delta hedging but not
for delta–gamma hedging.



Table 3
Kolmogorov–Smirnoff test results

BS SI CEV Heston (MV)

(a) Delta hedge P&L distribution functions

BS – 29.889*** 5.114* 4.923*

SI 29.889*** – 52.664*** 51.297***

CEV 5.114* 52.664*** – 1.232
Heston (MV) 4.923* 51.297*** 1.232 –

(b) Delta–gamma hedge P&L distribution functions

BS – 35.212*** 1.232 2.327
SI 35.212*** – 33.293*** 32.409***

CEV 1.232 33.293*** – 0.742
Heston (MV) 2.327 32.409*** 0.742 –

This table reports Kolmogorov–Smirnoff statistics for the null hypothesis that two P&L cumulative distribution
functions are the same. The test statistic is v2 distributed with two degrees of freedom. Significant values at 10%,
5% or 1% levels are marked with one, two or three asterisks, respectively. The hedging performance of scale-
invariant (SI) models is significantly different from the performance of the other models. No significant difference
is found between the hedging performances of the CEV and Heston (MV) models. The differences between the BS
P&L and the P&L from the MV hedge ratios (CEV and Heston (MV)) are significant for delta hedging but not for
delta–gamma hedging.
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The similarity in the performance of MV hedges is certainly intriguing as these hedge
ratios were not expected to be model-free.10 Since the CEV and Heston models have been
calibrated to the same implied volatility smile we do expect them to produce roughly the
same local volatility surface at the calibration time, as follows from the forward equation
(Dupire, 1996; Derman and Kani, 1998). Yet each model assumes different underlying
price dynamics, so both the option price dynamics and the local volatility dynamics will
differ from one model to another. Thus it is not intuitively obvious why the MV hedge
ratios should be the same for both models. If true, this would add an important constraint
to the permissible dynamics of local volatility, a result that is left to further research.
5. Summary and conclusions

Merton (1973) identified that scale invariance leads to the homogeneity of vanilla
option prices. More recently Bates (2005) proved that it also implies that vanilla option
price sensitivities are model-free. Both authors argue that scale invariance is a natural
and intuitive property to require for models that price options on financial assets.

This paper uses the scale-invariant property to address two challenging questions: are
there significant differences between the price hedge ratios of these models and are such
hedge ratios optimal for dynamic hedging? To answer these questions we have extended
the work of Bates (2005), who examined a limited set of models applied only to vanilla
options and did not consider the optimality of partial derivatives as hedge ratios. We have
shown that the scale-invariant property is common to the vast majority of models in the
10 In an earlier version of this paper we also considered the hedging performance of the SABR model of Hagan
et al. (2002) and found that the MV hedge ratios in this model produced hedging P&L distributions that were not
significantly different from the other MV hedging P&L distributions. However the standard hedge ratios in the
SABR model (which are not model-free, as the model is not scale-invariant) performed poorly.
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option pricing literature, that model-free results extend to all claims with homoge-
neous pay-off functions, and that model-free hedge ratios only have the minimum variance
property for scale-invariant stochastic volatility models if price–volatility correlation is
zero.

Our results show that to classify a model as scale-invariant or otherwise, one does not
need to know the returns density. In fact one does not even need an explicit price pro-
cess. Moreover, scale invariance preserves the homogeneity of any contingent claim
pay-off throughout the life of the claim. In fact, for any claim with homogeneous pay-
off, a model is scale-invariant if and only if the claim price is homogeneous at all times.
Then we prove that all partial derivatives of the claim price with respect to the underlying
price are given by linear combinations of the claim price and its derivatives with respect to
the claim characteristics. Thus scale invariance implies that price hedge ratios will be
model-free for any claim with a homogeneous pay-off and claim prices that are observable
in the market.

We then showed how minimum variance (MV) hedge ratios require an adjustment to
the model-free delta and gamma of scale-invariant models whenever there is a non-zero
correlation between the underlying price and any other stochastic component of the
model. Empirical results on S&P 500 index options showed that, whilst the standard
(model-free) hedge ratios of scale-invariant models perform worse than the BS model,
MV hedge ratios provide better hedges on average. Our results also reveal a remarkable
similarity in the performance of MV hedges, indicating that some model-free relationship
may hold even for MV hedge ratios.

There remains much scope for empirical and theoretical research arising from the
results in this paper: we have restricted the present study to local and stochastic volatility
models but an extension to general semi-martingales is possible; and the behaviour of
scale-invariant models under other hedging strategies, such as super-hedging, utility max-
imization or mean-variance hedging, remains to be explored.
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Appendix

Proof of Theorem 1. From the definition of Xt and (1),
X t ¼
St

S0

() dX t ¼
dSt

S0

¼ St

S0

dSt

St
() dX t

X t
¼ dSt

St

¼ H0dK() X T ¼ X 0 þ
Z T

0

H0X t dK: ð19Þ
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Since X0 = 1, XT is independent of S0 if H is dimensionless, i.e. homogeneous of degree
zero in S. Hence, H is at most a function of the past history of Xt but not of S0 or St explic-
itly. Finally, since K includes only the time t, Wiener processes and jump processes, the
fact that St is a semi-martingale implies that H satisfies the regularity conditions for the
coefficients of a semi-martingale and the integral in (19) is well-defined. h
Proof of Theorem 2. First consider European-type claims whose pay-off at expiry,
G (ST,K), is homogeneous of degree k, that is

GðuST ; uKÞ ¼ ukGðST ;KÞ u 2 Rþ: ð20Þ
We show that the process for S is scale-invariant if and only if

gðT ; uK; t; uSÞ ¼ ukgðT ;K; t; SÞ 8t 2 ½0; T �: ð21Þ
Define the numeraire Nt so that Zt,T = Nt /NT is independent of S and K. Also define the
relative price Xt,T = ST /St so that a model is scale-invariant if and only if Xt,T is dimen-
sionless relative to S. It follows from martingale theory (Harrison and Kreps, 1979; Har-
rison and Pliska, 1981) that:

gðT ; K; t; SÞ ¼ EQN GðST ;KÞ
N t

NT

����It

� 	
¼ EQN ½GðStX t;T ;KÞZt;T jIt� t 2 ½0; T �; ð22Þ

where the expectation is conditional on information up to time t, denoted by It, and is
under the martingale measure QN associated with the numeraire (see also Geman,
2005). Now apply the substitutions S # uS and K # uK, and assume (20). As Zt,T and
Xt,T are invariant under scaling in S and K, we have

gðT ; uK; t; uSÞ ¼ EQN ½GðuStX t;T ; uKÞZt;T jIt� ¼ EQN ½GðuST ; uKÞZt;T jIt�
¼ ukEQN ½GðST ;KÞZt;T jIt� ¼ ukgðT ; K; t; SÞ 8t 2 ½0; T �: ð23Þ

For the converse, suppose the pay-off function is homogeneous of degree k but that the
model is not scale-invariant. Then the relative price Xt,T is not dimensionless and scaling
S # uS implies X t;T 7! X u

t;T where X u
t;T 6¼ X t;T in general. Hence, there exists at least one

time t at which

GðuStX u
t;T ; uKÞ 6¼ GðuStX t;T ; uKÞ almost surely ð24Þ

so that, replacing into (22), we have

gðT ; uK; t; uSÞ 6¼ ukgðT ; K; t; SÞ ð25Þ
and the claim price is not a homogeneous function of degree k. It follows that if the claim
price at every time t is a homogeneous function of degree k, then the price process must be
scale-invariant.

The above argument only applies to claims without the possibility of early exercise. The
extension to American/Bermudan claims follows because if a European claim price is
homogeneous of degree k at all times, then so is the American/Bermudan equivalent. At
any time t before expiry, the claim is either exercised and its value equals the pay-off
G(St,K), which is homogeneous by assumption, or not exercised and the claim value
follows the same p.d.e. as the European claim, which is homogeneous for all t. Thus, the
American/Bermudan claim price is also homogeneous of degree k for all t. Conversely, if
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the pay-off were homogeneous but the American/Bermudan price were not, then the
European price could not be homogeneous because they are based on the same p.d.e., and
the price process would not be scale-invariant.

For clarity Theorem 2 supposed that the pay-off depends on the value of ST only, yet
the pay-off of a path-dependent claim can be a function of the whole path of S. This is not
a problem since the martingale argument can also be applied to path-dependent claims.
See e.g. Schweizer (1991). h
Proof of Corollary 1

(i) () (ii): The implied volatility is the volatility parameter in the Black and Scholes
(1973) model that equates the Black–Scholes (BS) price C bs to the price C of a standard
European call or put option (Latané and Rendleman, 1976). That is:

CðT ; K; t; SÞ ¼ CbsðT ; K; t; S; hðT ; K; t; SÞÞ: ð26Þ
Merton (1973) proved that scale invariance implies the price of a standard European
option is homogeneous of degree one (this also follows from Theorem 2), hence

CðT ; K; t; SÞ ¼ S C T ;
K
S

; t; 1

� �
and ð27Þ

CbsðT ; K; t; S; hðT ; K; t; SÞÞ ¼ S Cbs T ;
K
S

; t; 1; hðT ; K; t; SÞ
� �

: ð28Þ

Now by (26)

C T ;
K
S

; t; 1

� �
¼ Cbs T ;

K
S

; t; 1; hðT ; K; t; SÞ
� �

: ð29Þ

Since h(T,K; t,S) is implicitly defined in terms of K/S by (29), it is homogeneous of degree
zero in S and K. Conversely, if the implied volatility is homogeneous of degree zero, then
(26) implies that the European option price C will be homogeneous of degree one in S and
K because the BS price Cbs is homogeneous of degree one. Thus, by Theorem 2, the process
must be scale-invariant.
(i) () (iii): From Dupire’s equation (Dupire, 1996; Derman and Kani, 1998) we have

r̂2ðT ; K; t; SÞ ¼ 2ðCT þ ðr � qÞKCK þ qCÞ=K2CKK ; ð30Þ
where CT, CK and CKK are partial derivatives of the price C(T,K; t,S) of a standard Euro-
pean option with expiry T and strike K. Then, define h(x) = C(T,x; t, 1) and using (27) it
follows that for every x ¼ K

S

CT ðT ; K; t; SÞ ¼ ShT ðxÞ;
CKðT ; K; t; SÞ ¼ hxðxÞ;

CKKðT ; K; t; SÞ ¼ hxxðxÞ
1

S

ð31Þ

and replacing into (30),

r̂2ðT ; K; t; SÞ ¼ 2ðhT ðxÞ þ ðr � qÞxhxðxÞ þ qhðxÞÞ=x2hxxðxÞ: ð32Þ
That is, the local volatility is a function of the moneyness K/S and not of K and S

separately, hence it is homogeneous of degree zero. Conversely, if the local volatility is
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homogeneous of degree zero, it follows from Theorem 1 that there is a scale-invariant local
volatility model (an ‘equilibrium’ model, according to Derman and Kani, 1998) that fits all
vanilla option prices and, from Theorem 2, these prices must be homogeneous of degree
one. Hence, from Theorem 2 again, the original price process is scale-invariant.
Proof of Theorem 3. Since S is generated by a scale-invariant process, Theorem 2 yields

gðT ; uK; t; uSÞ ¼ ukgðT ; K; t; SÞ 8t 2 ½0; T �: ð33Þ

Differentiating (33) with respect to u and setting u = 1 we obtain

SgSðT ; K; t; SÞ þ K0gKðT ; K; t; SÞ ¼ kgðT ; K; t; SÞ ð34Þ

which is the well-known Euler’s theorem for homogeneous functions. After re-arranging,
this gives the expression for gS in (4). For gSS, we differentiate (33) twice with respect to u

and set u = 1 to obtain

S2gSS þ 2SK0gKS þ K0gKKK ¼ kðk � 1Þg: ð35Þ
On differentiating (34) with respect to S we obtain

K0gKS ¼ ðk � 1ÞgS � SgSS : ð36Þ
Combining (34)–(36) gives the expression for gSS in the theorem. Now assume gSm ¼Pm

i¼0AigKi Bi for m P 1, where gSm denotes the mth partial derivative of g with respect to
S and ðgKiÞni is the i-dimensional matrix of ith partial derivatives of g with respect to K,
and in particular we define gK0 ¼ g. Note that Ai (S,K) and Bi (S,K) are known matrices
at time t. It follows that

gSmþ1 ¼ ðgSmÞS ¼
Xm

i¼0

½ðAiÞSgKi Bi þ AiðgKiÞSBi þ AigKiðBiÞS �; ð37Þ

where

ðgKiÞS ¼ ðgSÞKi ¼ S�1ðkg � K0gKÞKi ¼ S�1ððk � iÞgKi � K0gKiþ1Þ ð38Þ

so that we may write gSmþ1 ¼
Pmþ1

i¼0
~AigKi ~Bi for some matrices ~AiðS;KÞ and ~BiðS;KÞ. As m is

arbitrary, we conclude that all partial derivatives with respect to S are linear combinations
of gKi . h
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Latané, H.A., Rendleman, R.J., 1976. Standard deviations of stock price ratios implied in option prices. Journal
of Finance 31 (2), 369–381.

Lee, R.W., 2001. Implied and local volatilities under stochastic volatility. International Journal of Theoretical
and Applied Finance 4 (1), 45–89.

Lewis, A., 2000. Option Valuation under Stochastic Volatility with Mathematica Code, first ed. Finance Press.
Massey Jr., F.J., 1951. The Kolmogorov–Smirnov test for goodness of fit. Journal of the American Statistical

Association 46, 68–78.
Merton, R., 1973. Theory of rational option pricing. The Bell Journal of Economics and Management Science 4

(1), 141–183.
Merton, R., 1976. Option pricing when the underlying stock returns are discontinuous. Journal of Financial

Economics 3, 125–144.
Naik, V., 1993. Option valuation and hedging strategies with jumps in the volatility of asset returns. The Journal

of Finance 48 (5), 1969–1984.
Nandi, S., 1998. How important is the correlation between returns and volatility in a stochastic volatility model?

Empirical evidence from pricing and hedging in the S&P 500 index options market. Journal of Banking and
Finance 22, 589–610.

Nelson, D.B., 1990. ARCH models as diffusion approximations. Journal of Econometrics 45, 7–38.
Psychoyios, D., Skiadopoulos, G., 2006. Volatility options: Hedging effectiveness, pricing, and model error.

Journal of Futures Markets 26 (1), 1–31.
Psychoyios, D., Skiadopoulos, G., Alexakis, P., 2003. A review of stochastic volatility processes: Properties and

implications. Journal of Risk Finance 4 (3), 43–60.
Rubinstein, M., 1994. Implied binomial trees. Journal of Finance 49 (3), 771–818.
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