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Arbitrage-free price bounds for convertible bonds are obtained assuming equity-linked
hazard rates, stochastic interest rates and different assumptions about default and recov-
ery behavior. Uncertainty in volatility is modeled using a stochastic volatility process for
the common stock that lies within a band but makes few other assumptions about volatil-
ity dynamics. A non-linear multi-factor reduced-form equity-linked default model leads
to a set of non-linear partial differential complementarity equations that are governed
by the volatility path. Empirical results focus on call notice period effects. Increasingly
pessimistic values for the issuer’s substitution asset obtain as we introduce more uncer-
tainty during the notice period. Uncertain in volatility, in particular, appears to be an
important determinant of the call premium that is so often observed in issuer’s call
policies.
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1. Introduction

A convertible bond (CB) is a hybrid derivative instrument with complex features
that make its value highly sensitive to several risk factors. They are convertible
into shares at the investor’s decision; the optimality of this decision depends on the
equity price, the future spot interest rate, and the probability that the issuer will
default. Thus prices are sensitive to stock price and interest rate dynamics, the stock
price behavior upon default and to assumptions about recovery and default intensity
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(hazard) rates. Of all these (highly uncertain) quantities the stock price dynamics
and default behavior are perhaps the most important. Indeed, in a detailed com-
parative study of the main types of CB pricing models, Grimwood and Hodges [26]
conclude that “accurately modeling the equity process . . . appears crucial whereas
the intensity rate and spot interest rate processes are of second order importance”.

It is an established fact that an equity process with constant volatility, such as
that assumed by Black and Scholes [12] is inappropriate for pricing most options. In
a large and growing literature (surveyed in [44]) many alternative volatility models
have been developed. Volatility models for pricing relatively short-term options, for
instance with up to two years to expiry, usually focus on the stochastic dynamics
of a variance or volatility process that is correlated with the underlying. Since
their short-term dynamics are particularly important, e.g., for pricing exotic, path
dependent structures and for hedging any type of option, these models are normally
calibrated to be consistent with the current implied volatility surface. But the short-
term volatility dynamics are relatively unimportant for pricing CBs. In the primary
market where the conversion option is long-dated, CB prices will depend on the
realized variance of the stock price over a very long period. Hence it is the long-
term equity volatility that is the major factor in the accurate pricing of CBs. Unlike
equity options, the long-term volatility is the important variable — however, this
is extremely difficult to forecast. This problem has been addressed in a new class of
“uncertain volatility” models, introduced by Avellaneda et al. [6], Avellaneda and
Parás [7] and Lyons [38]. These assume only that the volatility process take values
within a given interval, with increasing uncertainty in volatility being captured by
widening the interval.

Long-term equity volatility also affects the CB price through its specific call
features. Most CBs can be called for redemption by the issuer at the effective call
price (the clean call price, which is fixed in the covenant, plus accrued interest).
Calls are always accompanied by a notice period, of between 15 days and several
months, during which the bondholder can elect to convert at any time. When a
CB is called, the bondholder has a finite time period during which to convert or
to redeem the bond at the effective call price. The call part of the contract is
a crucial determinant of the CB value. Call features are attractive to issuers for
several reasons: they effectively cap investors profits from a rise in share price and
they lessen the uncertainty about issuers’ future liabilities because they are a means
to force conversion, especially when the firm can refinance at a cheaper rate. On the
other hand, call features make the CB less attractive to prospective investors. For
this reason the contract usually specifies that the bond is not callable for the first
few years after issue (the “hard call protection” period) and following this there
may also be “soft-call protection” period, after which the CB is unconditionally
callable. During a soft-call protection period the CB is callable only when certain
additional conditions are met. For instance, during the soft-call period calls may
only allowed when the stock price is sufficiently high, in which case the contract can
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specify a “stock price trigger” (e.g., that the common share price exceeds its at-issue
price by 50% for a certain number of days). Alternatively, “make-whole” provisions
may be made during the soft call protection period. Make-wholes are active during
the soft-call period and include premium make-whole and the coupon make-whole
features. These additional conditions are designed to increase the attraction of the
CB to investors.

The complex features of CBs are difficult to value, especially under uncertain-
ties about the evolution of risk factors. Nevertheless CBs continue to be a very
popular asset class. According to Morgan Stanley’s ConvertBond.com database,
the CB market was worth more than US$500 billion in 2004Q1, with nearly 400
issues between $125 million and $500 million and almost 100 issues in excess of
$500 million. According to Grimwood and Hodges [26], the modal CB contract in
the ISMA database for the US has a maturity of 15.0 years, pays a 6% semi-annual
coupon, and is hard-callable for the first time within three years. Of these contracts,
72% of them have a hard no-call period, and 53% have a put clause. Of the Japanese
CBs in the database, 88% have a hard no-call period, 91% have a soft no-call period,
23% have a put clause, while 78% are cross-currency and 56% had a conversion rate
re-fix clause.

The literature on valuation models for CBs is very large. Early work was based
on the firm value contingent claim approach of Brennan and Schwartz [13, 15] and
included the derivation of a closed-form pricing formula for callable convertible
bonds with simple features, based on simple assumptions about the evolution of
risk factors [32]. The firm value approach has the great advantage that default is
endogenous. On the other hand such models become tractable only when the com-
plex structure of firm value is assumed away. For instance, whilst the firm value
will be re-estimated each time the CB is marked to market, for the purpose of
the model it is normally assumed constant. Consequently most of the recent litera-
ture has focused on reduced form equity default models. McConnell and Schwartz
[40] noted that modeling the equity price rather than the firm value as a diffusion
precluded the possibility of default unless the discount rate is adjusted to account
for the possibility of default. This observation has inspired several such “blended
discount” approaches. In particular, Derman [22] considered a stock price binomial
tree where the discount rate in each time-step is a weighted average of the risky
rate and the risk-free (or stock loan) rate, with weight determined by the proba-
bility of conversion. In this framework the default event is not explicitly modeled.
However compensation for credit risk is included through this “credit-adjusted dis-
count rate”.1 One of the most important papers, by Tsiveriotis and Fernandes [46]
provided a rigorous treatment of Derman’s ideas by splitting the CB value into
equity and bond components, each discounted at respective rates. This approach

1At the same time, Ho and Pfeffer [28] worked with a single stochastic discount factor plus a
(constant) credit spread, but this proved difficult because the CB price will be unnecessarily
depressed when the equity price is high and the default risk is correspondingly low.
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has since been extended to include interest rate and foreign exchange risk factors
by Yiǧitbaştoǧlu [48] and by Landskroner and Raviv [36, 37] who applied a blended
discount model to price domestic and cross-currency inflation-linked CBs and to
imply credit spreads when the issuing firm has no straight debt and only convert-
ible bonds outstanding.

None of these papers deal explicitly with default. In fact, the implicit assumption
is that the stock price does not fall upon the bankruptcy announcement. However in
the credit risk literature, [23, 34, 39] many others, default risk is modeled by allowing
the stock price to jump downwards at the time of default. Thus the most recent
reduced form CB models include a stock price jump on default. Davis and Lischka
[21], Takahashi et al. [45], Ayache et al. [8], Bermudez and Webber [10], Andersen
and Buffum [3] and others include jumps in the stock price given default. Most of
these models incorporate “equity-linked” hazard rates that are driven by the stock
price diffusion and calibrated to the initial term structure of interest rates (e.g., via
the Hull and White [30] model).2 Of particular relevance to this paper is the model
introduced by Ayache et al. [8]. They propose a single factor model that splits the
CB into equity and bond components (as in [46]) and further allows the stock price
to jump on default. Their model also permits flexible recovery specifications while
explicitly dealing with the default event.

Some of the most interesting research on CBs seeks to explain the issuer’s call
policy after the soft-call protection period. During the notice period the issuer effec-
tively gives the investor a put on the common share. Thus the optimal call price
(the price attained by the common share so that it is optimal for the issuer to call)
should be such that the conversion price is just greater than the effective call price
plus the premium on the put. However, issuers often wait until the conversion price
is significantly higher than this put before issuing the call. Many reasons have been
proposed for this “delayed call” phenomenon. These include the price uncertainty
during the call notice period and the issuer’s aversion to a sharp stock price decline
[1, 4, 15, 25, 33]; the preferential tax treatment of coupons over dividends as an
incentive to keep the convertible bonds alive [4, 5, 16, 18] signaling effects, whereby
convertible bonds calls convey adverse information to shareholders that manage-
ment expects the share price to fall [27, 41]; and issuers preferring to let sleeping
investors lie [18, 24].

Ingersoll [33] emphasizes the importance of a precise treatment of the firm’s
behavior with regard to exercising its right to call. When call notice periods are
included in the CB valuation model, long-term volatility uncertainty has an addi-
tional role to play through its effect on the stock price during the call notice
period. However most, though not all, CB models assume volatility is constant.
An exception is Andersen and Buffum [3] who assume a deterministic local volatil-
ity process. Recently, call notice periods have been included in CB valuation by

2Bermudez and Webber [10] and Barone-Adesi et al. [9] also use Hull and White [30] for the
short-rate dynamics.
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Hoogland et al. [29], Butler [15], Lau and Kwok [35] and Grau et al. [25]. However
all these models assume constant volatility.

This paper first extends the single-factor call notice period model of Grau et al.
[25] to multiple sources of risk. We investigate the effect of stochastic interest rates
on the issuer’s optimal call policy when volatility is constant. We then incorporate
the uncertain volatility model of Avellaneda et al. [6], Avellaneda and Parás [7]
and Lyons [38] and find that this is much the most important determinant of the
CB value, as suggested by Grimwood and Hodges [26]. Even without special call
features CB prices are found to be very sensitive to uncertainty on the long-term
volatility of the stock price. When special call features are added, we find that
volatility uncertainty provides an intuitive reason for the call premiums of CBs,
and the “delayed call” phenomenon for unconditional call with notice period, in
particular.

The outline of the paper is as follows. Section 2 describes the valuation frame-
work. We employ a multi-factor reduced-form default model to show how complex
call notice and default features can be priced. Following Wilmott et al. [47], we
derive the linear complementarity problem that captures the CB features in each
case. We then address the long-term volatility sensitivity of CBs by assuming the
forward volatility is a mean-reverting process. We do not model the volatility dif-
fusion explicitly. Instead we simply assume that volatility remains within certain
upper and lower bounds. Then arbitrage-free price bounds for CBs with volatility
uncertainty are derived, using the approach introduced by Avellaneda et al. [6],
Avellaneda and Parás [7] and Lyons [38]. Section 3 presents some useful prelim-
inary results. The price of a CB is a highly complex function of many uncertain
risk factors, especially with so many issues having special features nowadays. We
therefore illustrate the varying effects of interest rate uncertainty, default behavior
and recovery assumptions in the presence of different CB features, before moving
on to the main results of this paper. In Sec. 4, examples illustrate the arbitrage-free
price and hedge ratio bounds that are derived from an uncertain volatility assump-
tion. These apply to any CB and for many different behavioral assumptions. Our
examples include call and put features, interest rate uncertainty, realistic default
behavior and appropriate recovery assumptions. A pessimistic approach to pricing
the issuer’s substitution asset, which comes into existence when the issuer calls the
CB, is achieved by widening the volatility uncertainty band. We find that even
moderately wider bands during the notice period will capture the call premium.
Section 5 concludes.

2. The Valuation Framework

Ayache et al. [8] derive a single-factor model with default where the stock price
jumps if default occurs. Moreover, the hazard rate is negatively correlated with
the stock price. Recovery is also modeled in a flexible way: if the issuer defaults
the bondholder has a choice of converting into defaulted common shares or taking
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420 A. B. Yiǧitbaşioǧlu & C. Alexander

a recovery amount based on either the bond face value or a proportion of the
pre-default bond portion value. Grau et al. [25] extend this model to include call
notice periods. The purpose of this section is to extend these models further: first we
include stochastic interest rates (and exchange rate risk if the CB has cross-currency
features); secondly we capture the long-term volatility sensitivity of the CB price
by assuming the forward volatility process lies within a finite range. Upper bound
CB prices are obtained when the volatility realizes its “worst” path in the range.
If the trader sells the bond on or above this price he is insured against volatility
movements within the range. Such price bounds were shown to be arbitrage-free by
Avellaneda and Parás [7].

The CB maturity value is the face value F (plus accrued interest) or the conver-
sion value κS(T ), whichever is the greater. The callable and/or putable CB price
is bounded above by the maximum of the conversion value and the call price (plus
accrued interest) and it is bounded below by the maximum of the conversion value
or the put price (plus accrued interest). Accrued interest is defined in the usual way

AI(t) = Cpn(tn+1)
t − tn

tn+1 − tn
∀ t ∈ [tn, tn+1],

where tn+1 − tn is the number of calendar days (given an appropriately chosen
day-count convention) and Cpn[tn+1] is the coupon amount paid on the (n + 1)th
coupon date.

2.1. A two-factor model with reduced-form default

International or domestic defaultable CBs with no notice period call features are
valued first, under a constant volatility assumption. Following Ayache et al. [8] and
Grau et al. [25], we make the simplifying assumption that default risk is diversifiable;
hence default probabilities in the “real world” measure and under the equivalent
martingale measure are identical. This assumption will, of course, not hold in most
practical cases, and parameters of the pricing equations will need to be risk-adjusted.
The stock price volatility ν is assumed constant. The dividend-paying rebased stock
price is denoted S̃(t) = Q(t)S(t) where Q(t) is the foreign exchange rate process with
volatility ξ.3 The short rate r(t) follows a correlated mean-reverting [19] diffusion,
so that the two risk factors have the dynamics:

dS̃t(t) = S̃(t)(r(t) + pη − q)dt + σsdW1(t) − ηS̃(t)dN(t),

dr(t) = (a − br(t))dt + σ
√

r(t)dW2(t),

dW1(t)dW2(t) = ρS,rdt,

where N(t) is a Poisson default process which jumps to unity upon default, and is
otherwise equal to zero.

3The domestic value of foreign stock, where we assume the CB is domestic currency denominated
but converts into foreign stock.
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Assume the single default event occurs as the first jump of a Poisson counting
process, and let the probability of default over a time interval ∆t (contingent on no
prior default) be equal to p∆t (where p is the risk-neutral hazard rate).

Upon default the stock price suffers a fractional loss in value in reference to its
pre-defaulted price as below:

S̃+ = S̃−(1 − η),

where 0 ≤ η ≤ 1.
When default occurs, the holder of a convertible has the option to convert imme-

diately into stock worth κsS̃(1− η), or to receive an amount equal to RX. Here, X

can be the bond face value, the accreted value of the issue price, the bond portion
of the convertible “package” just prior default, etc. All such recovery prescriptions
are accommodated in the framework. R is the recovery proportion 0 ≤ R ≤ 1.

We set up the hedge portfolio. Conceptually, the hedge portfolio, denoted Π(t),
behaves as follows:

Π(t) = (1 − pdt) × {undefaulted P ∗-dynamics of portfolio components}
+ pdt × {drop in Π(t) from default = Π(t+) − Π(t−)}.

Assume temporarily that the probability of default is zero. We form a hedge
portfolio Π consisting of one convertible, α units of zero-coupon treasury bonds of
equal maturity (or maturity equal to first call date if the convertible is callable),
and β units of the stock (α and β are clearly negative but ignore the signs for now).
The zero-coupon treasury is known to follow the SDE (under the risk neutral EMM)
given by the well-known Cox, Ingersoll and Ross [19] formula:

dB(t, T ) = r(t)B(t, T )dt − B(t, T )B̃(t, T )σr

√
rdW2(t),

where

B̃(t, T ) =
2(exp{(T − t)

√
b2 + 2σ2)} − 1)

2
√

b2 + 2σ2 + (b +
√

b2 + 2σ2)(exp{(T − t)
√

b2 + 2σ2} − 1)
.

Then Πt = Vt + αB(t, T ) + βS̃(t) and

dΠt = dVt + αdB(t, T ) + βdS̃(t) = Vtdt + VSdS̃ + Vrdr +
1
2
VSSdS̃2 + VSrdS̃dr

+
1
2
Vrrdr2 + α(r(t)B(t, T )dt − B(t, T )B̃(t, T )σr

√
rdW2(t))

+ β(S̃(t)(r(t) + pη − q)dt + σsdW1(t)) + βqS̃(t)dt,

recalling that dN = 0 on the non-defaulted path. The last term arises from the
continuous dividend receivable from holding stock.
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The last expression implies:

dΠt =
{

Vt + (r + pη − q)VS +
1
2
σ2

S S̃2VSS + (a − br)Vr

+
1
2
σ2

rrVrr + ρS,rσSσrS̃
√

rVSr + αrB + β(r + pη − q)S̃ + βqS̃

}
dt

+ {σSS̃VS + βσS S̃}dW1(t) + {σr

√
rVr − αBB̃σr

√
r}dW2(t),

to locally eliminate risk, we require that

β = −VS ,

α = Vr/BB̃,

substituting above and after some algebra this gives that on the undefaulted path

dΠt =
{

Vt − qS̃VS +
1
2
σ2

S S̃2VSS + (a − br)Vr

+
1
2
σ2

rrVrr + ρS,rσSσrS̃
√

rVSr + (r/B̃)Vr

}
dt

= [Vt + LV ]dt. (2.1)

Consider the portfolio value Π(t) contingent upon default having occurred. Then
the constituents in the hedge portfolio would behave as follows:

Π(t−) = V (t−) + αB(t−, T ) + βS̃(t−),

V (t+) → Max(κS̃(1 − η), RX) (no convertible exists anymore),4

βS̃(t+) → β(1 − η)S̃(t+) (stock price jumps),

αB(t+, T ) → αB(t+, T ) (riskless bond component stays the same).

Thus the drop in Π(t) at default (excluding the option to convert/take recovery) is:

Π(t−) − Π(t+) = (αB(t, T ) + β(1 − η)S̃(t) + Max(κS̃(1 − η), RX))

−V (t) + αB(t, T ) + βS̃(t)

= −V − ηβS̃(t) + Max(κS̃(1 − η), RX). (2.2)

The portfolio dynamics can be written as

dΠ(t) = (1 − pdt){no default incremental change in value of Π(t)}
+ (pdt){Π(t−) − Π(t+)}.

4But the option to convert into defaulted shares or R times some recovery amount X comes into
existence. See below.
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Adding all terms together gives the portfolio dynamics in the presence of default,
with the recovery and stock price jump assumptions given before. Therefore

dΠ(t) = (1 − pdt)
{

Vt − qS̃VS +
1
2
σ2

S S̃2VSS + (a − br)Vr

+
1
2
σ2

rrVrr + ρS,rσSσrS̃
√

rVSr + (r/B̃)Vr

}
dt

− pdt{V (t) + ηβS̃(t) − Max{κsS̃(t)(1 − η), RX}}.
As we have assumed the default risk to be hedged, the portfolio will earn the risk-
free rate over the next time increment. Hence

dΠ(t) = r{V (t) + αB(t, T ) + rβS̃(t)}dt = {rV (t) + r[Vr/B̃(t, T )] − rS̃(t)VS}dt.

Equating these expressions we get{
Vt + (r − q + pη)S̃(t)VS +

1
2
σ2

S S̃2VSS + (a − br)Vr

+
1
2
σ2

rrVrr + ρS,rσSσrS̃
√

rVSr − (r + p)V (t)
}

+ p Max{κsS̃(t)(1 − η), RX} = 0.

However the possibility of early exercise with put and call features results in inequal-
ity. Spefically it can be that:{

Vt + (r − q + pη)S̃(t)VS +
1
2
σ2

S S̃2VSS + (a − br)Vr

+
1
2
σ2

rrVrr + ρS,rσSσrS̃
√

rVSr − (r + p)V (t)
}

+ p Max{κsS̃(t)(1 − η), RX} ≥
=
≤

0,

which using the differential operator P is re-written as

Vt + PV − (r + p)V (t) + p Max{κsS̃(t)(1 − η), RX} ≥=
≤

0. (2.3a)

PV = (r − q + pη)S̃(t)VS +
1
2
σ2

SS̃2VSS + (a− br)Vr +
1
2
σ2

rrVrr + ρS,rσSσrS̃
√

rVSr.

(2.3b)

The linear complementarity constraints (LCC) describe how V (t) will depend on
the effective call price, the effective put price and the conversion value at every
point in the grid. Specifically, two cases are distinguished:

LCC 1:

(i) If Bc(t) + AI(t) ≤ κS(t) then V (t) = Max{κS(t), Bc(t) + AI(t)} = κS(t).
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That is, if at any point in the grid the effective call price Bc(t) + AI(t) is less
than the conversion value κS(t), the issuer calls the bond for redemption. Since the
bondholder may still convert, he has the choice of taking the effective call price or
conversion value, the latter being greater.

(ii) If Bc(t) + AI(t) > κS(t) then

either:

Vt + PV (t) − (r + p)V (t) + p Max{κS(t)(1 − η), RX} ≤ 0

&

V (t) = Max{κS(t), Bp(t) + AI(t)},
that is, if the continuation value of the CB falls below its conversion or effective put
value it is optimal for the bondholder to convert;
or

Vt + PV (t) − (r + p)V (t) + p Max{κS(t)(1 − η), RX} ≥ 0

&

V (t) = Bc(t) + AI(t),

that is, it is optimal for the issuer to terminate the time value of the uncalled CB
and call it for redemption;
or

Vt + PV (t) − (r + p)V (t) + p Max{κS(t)(1 − η), RX} = 0

&

Max
{
κS(t), Bp(t) + AI(t)

} ≤ V (t) ≤ Bc(t) + AI(t),

that is, it is neither optimal for the issuer to call (and pay more than the uncalled
value of the CB), nor for the bondholder to convert, as the continuation value of
the CB is higher.

Note that the specification of the linear complementarity conditions remains
unchanged when the hazard rate is assumed to depend on the stock price, i.e.,
p = p(S). The hazard rate dynamics affect V (t) through the replicating portfolio
dynamics (2.3a), and it is easy to accommodate a stochastic (inversely correlated)
functional form such as in Ayache et al. [8], Grau et al. [25] and Andersen and
Buffum [3]. We assume

p(S) = p(0)(S(t)/S(0))α.

Such a form was tested on Japanese corporate bonds by Muromachi [42] and
−2 ≤ α ≤ −1.2 was found to provide an adequate fit for that market.

2.2. Uncertain volatility

Volatility diffusions increase the dimension of the pricing SDE. Thus, for multi-
factor derivatives such as CBs, the resolution of the pricing SDE is computationally
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difficult, even using finite difference methods. The implementation problems of these
models have already discussed by many authors (for instance, see [2, 6]). But, at the
opposite end of the spectrum, the constant volatility assumption is very unrealistic
for long-dated contracts such as CBs and could lead to large errors if applied in
practice. Since long-term implied volatilities are either unreliable or not available,
traders might simply price and hedge CBs using a point volatility estimate, and
adjust estimates only for risk premia and transaction costs. But many traders would
also consider a finite range or “band” that, in their view, is likely to bound the
volatility. Taking the highest price over that range will then provide a lower bound
for their profit margin. This concept has been formalized in the uncertain volatility
models of Avellaneda and Parás [7], Lyons [38], and Avellaneda et al. [6].

We now incorporate these practical features of CB pricing in the PDE frame-
work. The assumption of randomness in stock price volatility is maintained, but
beyond this we make no parametric assumptions regarding its dynamics, and assume
only that it lies in some band, σS(t) ∈ [σS,L(t), σS,H(t)]. The band may be imputed
from the quantiles of the historical volatility distribution, from implied volatilities,
from a Bayesian prior or from any combination of these. For reasons of space, we do
not delve into the statistical methods that can be used to compute these bands. We
remark only that, for instance, the historical volatility distribution could be based
on the in-sample volatility term structure estimates of a suitable GARCH process
applied to a long history of daily returns on the common shares of the CB issuer.
The mean reverting behavior of volatility implies that the variability of volatility
estimates decreases as the volatility maturity increases. Thus the empirical distri-
bution of volatility will typically result in a narrowing volatility range as maturity
increases.

The arbitrage-free CB price bounds depend on the worst and best realization
of volatility within its band. In the framework developed by Avellaneda and Parás
[7], Lyons [38], and Avellaneda et al. [6] valuation becomes a stochastic control
problem where the volatility term in the pricing equation switches, depending on
the gamma of the instrument. The numerical convergence properties of such models
are discussed in Pooley et al. [43].

Just as in Sec. 2.1, the construction of a hedge portfolio leads to the CB valuation
equation. Note that (2.3b) contains the following terms in stock price volatility that
are influenced by its uncertainty:

LV (t) =
1
2
σ2

SS2VSS + ρS,rσSσrS
√

rVSr. (2.4)

Because we are uncertain about the path of σS(t) in a long-term band, we price
the CB pessimistically to obtain the “best” price and optimistically to obtain the
“worst” price. Consider first the “best” price. The task of the numerical algorithm
is to switch the stock price volatility to σS,H(t) at every discretization point in the
grid whenever

1
2
σ2

S,HS2VSS + ρS,rσS,HσrS
√

rVSr ≥ 1
2
σ2

S,LS2VSS + ρS,rσS,LσrS
√

rVSr, (2.5a)
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and to switch to σS,L(t) at every discretization point in the FD grid whenever

1
2
σ2

S,HS2VSS + ρS,rσS,HσrS
√

rVSr <
1
2
σ2

S,LS2VSS + ρS,rσS,LσrS
√

rVSr . (2.5b)

For the “worst” price the numerical algorithm now switches the volatility to
σS,L(t) at every discretization point in the grid when

1
2
σ2

S,HS2VSS + ρS,rσS,HσrS
√

rVSr ≥ 1
2
σ2

S,LS2VSS + ρS,rσS,LσrS
√

rVSr, (2.6a)

and switches to σS,H(t) at every discretization point on the grid when

1
2
σ2

S,HS2VSS + ρS,rσS,HσrS
√

rVSr <
1
2
σ2

S,LS2VSS + ρS,rσS,LσrS
√

rVSr . (2.6b)

The switching volatility regime results in a non-linear parabolic PDE in two-
dimensions. This is then re-formulated as a linear complementarity problem that
captures the conversion, put, and call features of the CB.

2.3. Call notice periods

Now we allow that, if the issuer calls the CB at time t, a notice period of length τ

applies during which the bondholder can elect to convert or wait until t + τ to
redeem the bond for the effective call price at that time. On calling the CB the
issuer effectively delivers a “substitution asset” consisting of common shares plus a
European style put with maturity t + τ and strike equal to the dirty call price. We
denote the value of this substitution asset by VC(t). Inclusion of the notice period
will increase the numerical burden considerably, since the upper constraint in the
PDE is itself the solution of another “sub-PDE” to be satisfied by the substitution
asset. Notice periods are typically between fifteen days and several months dura-
tion. Hence the sub-PDE refers to an asset with significantly smaller maturity than
the CB.5

The modified payoff at redemption becomes Max{κS(t+τ), CP (t)+AI(t+τ)}.
This resembles the payoff of a CB with a reduced time value but with much higher
face value. As the conversion option is American and put provisions still apply in
(t, t+τ) the substitution asset value has no closed form solution (unless no coupons
or dividends are payable in the notice period, in which case a closed-form solution
does exist). The substitution asset must be solved for at each time step of the CB in
addition to the normal time-stepping routine for the CB itself. Then this auxiliary
asset’s value constitutes the upper linear complementarity constraint. When the
uncalled CB is more valuable than this, it is in the firm’s best interest to call the
CB for redemption.

5But whilst fewer time steps are needed for convergence, the computational time still increases
linearly in the number of time-steps in the sub-PDE. Evidently the notice period results in com-
putational cost that scales by a factor equal to the number of sub-time-steps for substitution
asset.
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We formalize this as follows. Recall the valuation equation with default and
uncertain volatility but without notice periods is:

>

Vt + PV (t) − (r + p(S))V (t) + p(S)Max{κS(t)(1 − η), RX} = 0,

<

(2.7a)

with

PV (t) = (r − q + p(S)η)S(t)VS + (a − br)Vr +
1
2
σ2

rrVrr + LV (t), (2.7b)

where LV (t) is defined by (2.4). Furthermore the numerical algorithms determines
LV (t) using “best” price volatilities defined by (2.5a) and (2.5b), and “worst” price
volatilities defined by (2.6a) and (2.6b).

The linear complementarity constraints may now be formulated in terms of the
value of the substitution asset as follows:

LCC 2:

(i) If VC(t) ≤ κS(t) then V (t) = κS(t).

That is, if the substitution asset is less valuable than the conversion value it is in
the issuer’s interest to call and terminate the time value of the CB, whereupon the
bondholders will elect to convert because the conversion price is more valuable than
the substitution asset that replaces the CB.

(ii) If VC(t) > κS(t) then

either:

Vt + PV (t) − (r + p(S))V (t) + p(S)Max{κS(t)(1 − η), RX} ≤ 0

&

V (t) = Max{κS(t), Bp(t) + AI(t)},
that is, the continuation value of the CB falls below its conversion or effective put
value and it is optimal to convert;
or

Vt + PV (t) − (r + p(S))V (t) + p(S)Max{κS(t)(1 − η), RX} ≥ 0

&

V (t) = VC(t),

that is, the uncalled CB is more valuable than the substitution asset and it is
optimal to call;
or

Vt + PV (t) − (r + p(S))V (t) + p(S)Max{κS(t)(1 − η), RX} = 0

&

Max{κS(t), Bp(t) + AI(t)} ≤ V (t) ≤ VC(t),
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that is, continuation is optimal because (a) conversion and/or put is less valuable to
bondholders and (b) if the issuer called it would deliver a more valuable substitution
asset than the current (uncalled) CB value.

Ingersoll [32], Asquith [4], and others have cited the firm’s natural aversion to a
“busted call” as an important factor explaining the delayed call phenomenon. That
is, the issuer fears that after it calls the CB, the stock price falls significantly during
t + τ . If this happens the issuer is faced with a “busted call” and the undesirable
outcome of having to redeem the bond at the much higher dirty call price in cash.
Then the redemption payment can lead to cash flow problems and it may even need
to float a new issue to finance the payment.

The uncertain volatility CB valuation framework can be used to formalize the
busted call explanation of firms’ delayed call policies. Fearing a busted call, the
substitution asset should be priced on the assumption that volatility will be par-
ticularly high during the notice period. Thus, for instance, the upper bound for
volatility can be based on the maximum historical τ -period volatility. To incorpo-
rate this feature we include the possibility that the issuer assumes a wider band of
volatility uncertainty during the notice period.

At each time-step in the grid for V (t) before completing the routine, VC(t) needs
to be computed. The inequality constraint satisfied by VC(t) is

VC,t + PVC(t) − (r + p(S))VC(t) + p(S)Max{κS(t)(1 − η), RX} ≤ 0, (2.8)

where now the stock price volatility in PVC(t) switches according to between wider
extremes. In particular, we assume that σS,H(t) increases during the call notice
period.

The linear complementarity constraints become:

LCC 3:

VC,t + PVC(t) − (r + p(S))VC(t) + p(S)Max{κS(t)(1 − η), RX} < 0

&

VC(t) = Max{κS(t), Bp(t) + AI(t)},
or

VC,t + PVC(t) − (r + p(S))VC(t) + p(S)Max{κS(t)(1 − η), RX} = 0

&

VC(t) ≥ Max{κS(t), Bp(t) + AI(t)}.

2.4. Recovery

As in Ayache et al. [8], a range of different recovery assumptions can be modeled.
Recovery is captured by the term RX in the pricing equation (2.7a) with 0 ≤ R ≤ 1
and X being a proportion of either face value or the market value of the bond
component. The recovery can be any portion of face value or of the market value
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of the bond portion of the CB prior to default. If face is recovered, the PDE is
totally uncoupled: we simply replace X by F and solve the resulting single PDE.
The recovery of a portion of the face value certainly makes the problem easier to
solve, but it may be more appropriate to assume bondholders will be left with a
proportion of the pre-default market value when the issuer goes bankrupt. This is
more involved. We follow Ayache et al. [8], who suggest an effective splitting of the
CB into bond and equity components in the spirit of Tsiveriotis and Fernandes [46].

2.5. Discretization

PDEs are solved using the Crank and Nicholson [20] scheme with successive over-
relaxation (SOR). For the bond-portion recovery model, we discretize the model as
follows. Denote by B̃n the post-iterations value of B at the nth calendar time-step,
prior to application of the LCC2 and LCC3 constraints and denote by Bn+1 the
known n+1th time-step value of B. We obtain B̃n using the SOR iterative method
on the discretized bond component PDE. Time-stepping using a θ-advancement
scheme (and we use Crank-Nicholson, with θ = 1/2) is implemented by writing the
θ-averaged system of simultaneous equations in Bn+1 and B̃n:

−Bn+1 − B̃n

∆t
= θ(PB)n+1 + (1 − θ)(PB̃)n − θ(r + p(S))Bn+1

− (1 − θ)(r + p(S))B̃n + θp(S)RBn+1 + (1 − θ)p(S)RB̃n,

which implies
(

1
∆t

1(M+1)(L+1) − (1 − θ)Pn

)
B̃n + (1 − θ)(r + (1 − R)p(S))B̃n

=
(

1
∆t

1(M+1)(L+1) + θPn+1

)
Bn+1 − θ(r + (1 − R)p(S))Bn+1,

where M + 1 is the number of spatial grid points for the discretized stock price,
L+1 is the number of spatial grid points for the discretized short term interest rate,
and 1(M+1)(L+1) is the block-diagonal (M + 1)(L + 1)-dimensional identity matrix.

For the equity component C, denote by C̃n the post-iterations value of C at the
nth calendar time-step, prior to application of the LCC2 and LCC3 constraints and
denote by Cn+1 the known n + 1th time-step value of C. We obtain C̃n using the
SOR iterative method on the discretized bond component PDE, again time-stepping
using the Crank-Nicholson scheme.

This leads to:

−Cn+1 − C̃n

∆t
= θ(PC)n+1 + (1 − θ)(PC̃)n − θ(r + p)Cn+1 − (1 − θ)(r + p)C̃n

+ θp Max(κS(1 − η) − RBn+1, 0)

+ (1 − θ)p Max(κS(1 − η) − RB̃n, 0),
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and notice the coupling with the bond portion above. The above system implies:(
1

∆t
1(M+1)(L+1) − (1 − θ)Pn+1

)
C̃n + (1 − θ)(r + p)C̃n

=
(

1
∆t

1(M+1)(L+1) + θPn

)
Cn+1 − θ(r + p)Cn+1

+ θp Max(κS(1 − η) − RBn+1) + (1 − θ)p Max(κS(1 − η) − RB̃n).

The CB price at each time-step is then the sum of Bn and Cn.

2.6. Terminal and boundary conditions

The substitution asset matures at t + τ , at which point the holder chooses between
redemption and conversion. Thus the terminal condition for the substitution
asset is

VC(S, r, t + τ) = Max{κS(t + τ), Bc(t + τ) + AI(t + τ)}. (2.9)

At maturity, by converting the bondholder must pay the strike price F − AI(T ),
which is similar to a warrant, so the terminal condition for the CB is:

V (S, r, T ) = F + AI(T ) + Max{κS(T )− F − AI(T ), 0}
= Max{κS(T ), F + AI(T )}. (2.10)

At the upper boundary for S we assume the price is linear in S, as the convertible
bonds will be almost certainly converted as S → ∞. Thus V (Smax) = κSmax or more
precisely, V (M∆S, r, t) = κM∆S, so VS(M∆S, r, t) = κ and VSS(M∆S, r, t) =
VSr(M∆S, r, t) = 0.

The boundary at S = 0 is implicitly defined in the PDE. As the terms in S

vanish the PDE becomes identical to that of a corporate bond. Due to the CIR
assumption, interest rates are non-negative and the lower spatial boundary for the
interest rate is r = 0. The PDE at r = 0 is approximated to second order accuracy,
as several of the spatial terms in r vanish on the domain. Then the PDE (2.7a)
reduces to

>

Vt + aVr − γSVS + 1
2σ2

sS2VSS − rV (t) = 0 ∀ t ∈ [0, T ].
<

The upper boundary for r is more difficult to specify. The case r → ∞ is easily
visualized as in that case the bond floor drops to zero.6 In practice (due to the
mean-reverting CIR specification) we truncate the r domain at a much lower level.
We assume Vr < ∞ and Vsr < ∞ on the upper boundary for r.

6For a rigorous treatment regarding the r → ∞ boundary conditions, we refer to Barone-Adesi
et al. [9].
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3. Preliminary Results

In this section we examine the empirical features of the model when volatility is
constant. In Sec. 3.1 we price a CB with very simple call and put features and with
fixed default and recovery rates to assess the effect of interest rate uncertainty on
the CB price. We also examine how price changes with moneyness by changing the
conversion ratio κ. Section 3.2 looks at the behavior of the CB price and hedge
parameters as we change the call and put features and Sec. 3.3 introduces different
recovery assumptions, hazard rates and stock loss rates.

3.1. Quantifying interest rate risk

We consider a 10-year semi-annual CB with 7% coupon including a call at year 4
(without notice period) and two put possibilities at years 4 and 7. Such features will
primarily affect the bond value of the CB. The stock price diffusion has a volatility
of 38% and a risk premium γ = 0.015. Upon default 20% of face value is recovered,
the stock price drops by 30%, while the hazard rate is 0.03. Initially the conversion
ratio is unity. We then set κ = 0.5 to add even more weight to the bond value of
the CB. In this and all subsequent examples the face value of the bond is 100$ and
the initial stock price is also 100$.

Three cases are considered7:

(a) A one-factor model where the term structure of rates is flat, at 5%.
(b) A deterministic term structure model, assuming an upward sloping yield curve

obeying the CIR equation with the diffusion set to zero. The short-term interest
rate is 5%, the long-term interest rate is 7.5% and the mean reversion intensity
is high (0.8).

(c) A two-factor model with the same parameters as (b) but with a CIR short rate
volatility of 22% and a correlation between S and r of 0.1.

The term sheets for the CB and its price and hedge ratios for the three models are
shown in Table 1.8

In our example, the steep upward sloping yield curve in model (b) has a marked
effect on the price. Increasing the long-term rate decreases the bond value of the
CB, which is the dominant effect for this CB. Thus, from the flat yield curve price
of 143.87 in model (a), the price decreases to 137.41 — a 4.5% difference (and note

7CB pricing models that assume a flat term structure of interest rates include those of McConnell
and Schwartz [40], Derman [22], Tsiveriotis and Fernandes [46], Ayache et al. [8] and Grau et al.
[25]. Several authors allow for deterministic interest rates, including Hoogland et al. [29], Takahashi
et al. [45], Hung and Wang [31], and Andersen and Buffum [3]. Many CB pricing models include
stochastic interest rates, including those developed by Carayannopoulos [17], Davis and Lischka
[21], Yigitbaşioǧlu [48], Barone-Adesi et al. [9], Grimwood and Hodges [26] and Bermudez and
Webber [10].
8In the tables M denotes the number of subdivisions of [0, Smax], L denotes the number of sub-
divisions of [0, rmax], N denotes the number of subdivisions of [0, T], and T sub steps denotes the
number of time-steps in the algorithm for pricing the substitution asset.



May 9, 2006 16:9 WSPC-104-IJTAF SPI-J071 00357
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Table 1. Effect of Stochastic interest rates and con-
version premium.

General Cash Flows

Maturity 10.0 Face $100
γ 0.015 Coupon 0.07
σs 0.38 Frequency 2

Grid Dimensions Credit Model

Smax $1000 p 0.03
rmax 0.20 η 0.3
N 800 R 0.2
M 200
L 20

Call and Notice Periods

Time Price Notice N/A
4.0 155.0 Period

CIR Put Features x = 1.0 x = 0.5

(a)

a 0 Time Price Price 143.87 Price 114.3
b 0 4.0 103.5 Model∆ 0.6877 Model∆ 0.235
σr 0 7.0 108.5 Model Γ 0.0031 Model Γ 0.00015
�r 0

(b)

a 0.06 Time Price Price 137.41 Price 106.28
b 0.8 4.0 100.0 Model∆ 0.7237 Model∆ 0.2429
σr 0 7.0 105.0 Model Γ 0.0003 Model Γ 0.00183
�sr 0

(c)

a 0.06 Time Price Price 138.63 Price 107.44
b 0.8 4.0 100.0 Model∆ 0.7213 Model∆ 0.2459
σr 0.22 7.0 105.0 Model Γ 0.00293 Model Γ 0.00176
�sr 0.1

that higher coupons will increase this difference further). At the same time, the
delta of the CB with respect to the equity increases. This is because increasing the
long-term rate also increases the value of the conversion option.

The addition of interest rate volatility could have little effect on the CB price
when there is a positive correlation between interest rates and stock price and the
conversion ratio is unity. When a rise in interest rates is likely to be accompanied
by an increase in stock price, whilst the bond value decreases the value of the
option to convert into equity will increase. Conversely, any stochastic movement in
interest rates downwards would increase the bond value but this would be offset by
a decrease in the equity value of the CB. Of course, under negative equity-interest
rate correlation the price effects of stochastic interest rates would be greater.
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Even with the high level of interest rate volatility chosen in our example, the pos-
itive equity-interest rate correlation means that the CB price is not much affected.
It does increase marginally, to 138.63, a rise of about 0.9%. A decrease in the con-
version ratio should cause the interest rate uncertainty effect on the bond value to
dominate. With a low conversion ratio (κ = 0.5), stochastic interest rates produce
a rise in price of 1.1%, from 106.28 to 107.44. The main effect of decreasing the con-
version ratio is, of course, to decrease the stock delta: from about 0.72 to about 0.24
in our example. Interest rate uncertainty also has a small but noticeable effect on
the delta. This increases by 1.2%, from 0.2429 (with deterministic rates) to 0.2459
(with stochastic rates).

In summary, even in the absence of special put and call features, the accurate
modeling of interest rates can be important for pricing as well as hedging, particu-
larly when the conversion ratio is low and equity-interest rate correlation is negative.
Our examples indicate that the choice between stochastic and deterministic rates
can influences prices by more than 1% even when the equity-interest rate correlation
is positive. Also, compared with hedge ratios based on stochastic interest rates, the
investor could be under-hedged in stock by 1% or more if deterministic rates are
assumed, and by 4% or more if the CB is priced using a flat term structure.

3.2. Call and put features with equity-linked hazard rates

Calls and puts are increasingly common features of CBs. Grimwood and Hodges
[26] report that 72% of US convertibles in the ISMA database are callable and 99%
of the Japanese convertibles are callable. Call and put features reduce the lifetime
of CBs. When common share volatility is high, the call feature is a valuable option
to force conversion. Without notice periods the issuer should call when the CB price
exceeds the effective dirty call price at any given time. The issuer will call to curtail
the time value of the CB, which is an increasing function of the volatility. The put
feature in CBs on the other hand is expected to be especially valuable when the
probability of default is high, when the conversion value is low, or when the hazard
rate is equity-linked. The following example illustrates the significant effect of these
features on CB prices and hedge ratios.

Consider a 5-year CB (convertible into one common share with current price
S(0) = 100), paying 8% coupon semi-annually. The underlying shares do not
pay dividends. Interest rates are first assumed to be flat at r(0) = 5% while CB
prices and deltas are computed to measure the influence of call and put features as
equity volatility and hazard rates are varied. Thus (a, b, σr, ρs,r) = (0, 0, 0, 0) while
(η, R, α) = (0.3, 0, 0). We consider three scenarios:

I: Non-callable and non-putable
II: Callable in 3 years at price $170, non-putable

III: Putable in 3 years at price $109 and callable in 3 years at price $140

Results are summarized in Table 2.
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Table 2. Effect of call and put features with varying
(a) volatility and (b) hazard rate.

σS(p = 0.02)

20% 35% 50% 65% 80%

Price ($)
I 137.1 146.1 156.4 165.2 172.9
II 135.1 143.6 152.0 159.8 166.9
III 133.7 142.6 151.3 159.4 167.0

Delta
I 0.79 0.774 0.795 0.826 0.854
II 0.717 0.718 0.746 0.78 0.813
III 0.667 0.686 0.720 0.756 0.791

p(σS = 20%)

0 0.01 0.02 0.04 0.08

Price
I 140.1 138.6 137.1 134.5 130.1
II 138.0 136.5 135.1 132.5 128.1
III 136.0 134.6 133.2 130.6 126.6

Delta
I 0.756 0.775 0.792 0.823 0.873
II 0.679 0.698 0.717 0.751 0.808
III 0.634 0.651 0.667 0.694 0.749

General comments on these results are:

(i) The price of a CB increases with volatility, regardless of put or call features.
(ii) The addition of a put feature increases the CB value, and the addition of a call

feature decreases the value. These effects increase as equity volatility increases.
(iii) The value of the protection offered by a put feature also increases with the

default probability.
(iv) Increasing probability of default has a uniformly detrimental effect on prices,

while monotonically increasing the delta.
(v) The delta drops sharply with the introduction of both call and put features.
(vi) The reduction in delta through adding a call feature decreases with the

hazard rate.

The results in Table 2 were, however, based on unrealistic assumptions about
interest rate and default behavior, with a flat, constant yield curve and with hazard
rates assumed independent of the equity value. So let us now consider how call
and put features affect CB prices within a more detailed CB model, and in the
context of a more realistic example. Consider again a 5-year CB with 8% coupon
paid semi-annually, but now assume a conversion ratio of 70% and a 30% recovery
rate. We also assume the stock price drops by 30% upon default; the holder then
has the choice of taking 30% of face value (i.e., $30) or converting into shares.
The yield curve is upward sloping and volatile with a long rate of 10%. The equity
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price diffusion has γ = 0.024 and the interest rate diffusion has CIR parameters
(a, b, σr, ρs,r) = (0.08, 0.8, 0.275,−0.3).

We now consider the price effect of call and put features for different levels
of stock price volatility, assuming an equity-linked hazard rate and, using the
form suggested by Muromachi [42] with default characteristics (p(0), η, R, α) =
(0.04, 0.3, 0.3,−1.2). The three scenarios are:

I. Non-callable and non-putable
II. Putable in 3 years at price $109.0

III. Callable in 3 years at price $140.0

Figure 1 illustrates the price effect of these features for different levels of volatil-
ity and in the presence of (a) constant and (b) equity-linked hazard rates. It is
seen that the price effects of call and put features are dominated by the assumption
regarding hazard rate dynamics, especially when volatility is high. The difference
between constant and equity-linked hazard rate assumptions is less pronounced
when there is a put feature because the protection offered by the put renders the
CB less sensitive to hazard rate dynamics. On the other hand, adding a put fea-
ture is even more valuable when hazard rates are equity-linked. Table 3 shows that
the put feature gives price increases of between 6% and 10%, increasing with the
level of equity volatility. In general, introducing the call feature decreases the price
by between 1% and 3% — calls still have more noticeable price effects under high
volatility. However, compared with put features the call feature price effects are less
sensitive to the hazard rate dynamics.
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Fig. 1. Price effect of call and put features for different common share volatility with (A) constant
and (B) equity-linked hazard rates.
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Table 3. Effect of call and put features with equity linked hazard rates and
stochastic interest rates.

σS

Price ($) 20% 35% 50% 65% 80%

Stochastic Interest Rates
I 100.08 105.07 108.58 110.22 110.23
II 105.78 111.37 116.42 120.04 121.83
III 99.43 103.59 106.20 107.04 106.64

Deterministic Interest Rates
I 99.71 104.83 108.23 109.72 109.72
II 105.54 111.22 116.20 119.69 121.33
III 99.04 103.37 105.94 106.68 106.22

Equity-linked hazard rates enhance the effect of interest rate uncertainty on the
CB price, particularly at high levels of equity volatility. This is because high equity
volatility increases the default probability and, with stochastic interest rates, the
cash amount recovered becomes more sensitive to interest rates. For instance, re-
pricing the putable but non-callable CB (II) with CIR parameters (a, b, σr, ρs,r) =
(0.08, 0.8, 0, 0), we find that this deterministic model overstates the price most when
volatility is low. For example, the bias is 36.4 cents (0.35%) when volatility is 20%.
This is the case when hazard rates are constant but for equity linked hazard rates,
the price difference increases with volatility. For instance, with the assumption of
deterministic interest rates the prices rise to 57.7 cents (0.52%). More detailed
results are available from the authors on request.

3.3. Effect of default and recovery assumptions

We now extend the empirical analysis to both reduced form and “blended-discount”
default models, also changing the recovery assumptions and the assumptions regard-
ing stock price behavior upon default. Again, volatility is still assumed to be con-
stant and no notice period applies.

Assuming the face value is recovered and hazard rates are constant, Table 4
reports prices and hedge ratios for different levels of p(0), R and η.9 The notional
instrument is 5-year CB with 8% semi-annual coupon, callable at a clean price of
$170.0 in 3 years and putable at $109.0 in 3 years, and the common share pays no
dividends. The bond is at the money (i.e., the conversion ratio is unity) and for the
hazard rate model we set α = −1.0. We set σs = 20% and the CIR parameters are
(a, b, σr, ρs,r) = (0.08, 0.8, 0.275,−0.3).

For the parameters chosen, the price sensitivity to p(0) and to η is nearly
identical, being virtually insensitive to the face recovery rate when R ≤ 0.6. The

9These may be benchmarked against the two-factor model prices of Tsiveriotis and Fernandes [46]
which assume η = 0 and a credit spread of p(1 − R).
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Table 4. Effect of face recovery rate, stock loss rate, and hazard rate. Cases: variable η
(R = 0, p = 0.02), variable R (η = 0.3 p = 0.02), variable p (η = 0.3, R = 0.0).

η 0.0 0.2 0.3 0.4 0.6 0.8 1.0

Price 134.889 134.408 134.173 133.944 133.499 133.071 132.657
∆ 0.712 0.720 0.724 0.728 0.736 0.743 0.750
Γ 6.07e−3 5.98e−3 5.93e−3 5.88e−3 5.78e−3 5.68e−3 5.57e−3

R 0.0 0.2 0.3 0.4 0.6 0.8 1.0

Price 134.173 134.173 134.174 134.175 134.282 134.905 136.063
∆ 0.724 0.724 0.724 0.724 0.714 0.690 0.670
Γ 5.93e−3 5.93e−3 5.94e−3 5.95e−3 6.45e−3 7.06e−3 6.92e−3

p 0.00 0.01 0.02 0.03 0.04 0.06 0.08

Price 136.805 135.439 134.173 133.001 131.909 129.895 128.082
∆ 0.671 0.699 0.724 0.746 0.767 0.804 0.836
Γ 7.13e−3 6.49e−3 5.93e−3 5.42e−3 4.97e−3 4.18e−3 3.51e−3

hedge ratio behavior is more illuminating: a high R reduces the delta significantly.
At the extreme, if 100% of face value is recovered on default, 5.4% less need be
invested in the stock hedge portfolio, compared to a zero recovery assumption. How-
ever a more realistic assumption, that only 30% is recovered, leaves delta unchanged.
A low stock loss rate also reduces delta significantly; in particular, assuming the
stock price jumps to zero gives a delta 3.8% higher than when the stock price is
unaffected by default (η = 0). Compared to the default-free case (p(0) = η = 0),
in the defaultable model we see a decrease in gamma. Figure 2 displays the price

0
50

100
150

200
250300

Stock_Price

1
2

3

4

5
To_Maturity

0

100

200

300

CB Price

Fig. 2. Evolution of price of 5 year at the money CB with 8% semi-annual coupon, callable at $170
in 3 years and putable at $109.0 in 3 years.
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surface evolution in time when η = 0.8, R = 0 and p(0) = 0.02. Notice that as
S → 0 the CB price → 0 as its bond floor collapses due to the rapid rise in p(S).

The choice between face and market value for recovery has only a small influence
on prices and hedge ratios. Accurate assumptions about stock loss and recovery
rates are far more important. To see this, Table 5 gives various prices and hedge
ratios for a 7-year CB with 6% semi-annual coupon, callable at a clean price of
$140.0 in 3 years and putable at $103.0 in 3 years, with a conversion ratio of 0.7.
The equity and interest rate diffusion parameters are γ = 0.01, σS = 50% and
(a, b, σr, ρs,r) = (0.06, 0.8, 0.25,−0.3). The CB is priced using the reduced form
model assuming recovery rates ranging from 0 to 0.5 of either the face value or the
market value of the bond portion. In Table 5, these prices are denoted PF and PB

respectively and similar subscripts are used for the hedge parameters. As expected,
PF > PB and, whilst the price difference PF − PB increases with R, it is not as
significant as some of the other prices effects shown here.

The prices and hedge ratios listed in the columns headed η = 0 in Table 5
are directly comparable with the Tsiveriotis and Fernandes (TF) model prices and
hedge ratios with credit spread s = p(1 − R). The TF results are shown in the
columns headed s. With p fixed at 0.04, the credit spread decreases monotonically
with as R increases. Note that the reduced form and TF models yield similar prices
for high recovery levels but for low R (i.e., higher credit spreads) the prices and
hedge ratios are significantly different. The reduced form prices are much higher
than the TF prices for low values of R but marginally lower than TF prices when
R is higher (≥ 0.5 here). The difference between the two model prices increases
with the credit spread. In this example the price difference peaks at $4.21: the
reduced from prices are 4% greater than the TF prices when the credit spread is
0.04. Marked differences in the hedge ratios are also observed. The reduced form
deltas are significantly lower than the TF deltas, especially for high credit spreads;
the TF model gammas are very small (of the order of 10−4) and this is not the case
for reduced form gammas.

Now consider the effect of changing the stock loss rate η. Table 5 shows that
while CB prices are decreasing in η when the recovery rate is low, they increase
with η when recovery rates are high. Evidently for sufficiently low recovery rates
the drop in value of the conversion option in the default portfolio dominates but
when the recovery rate is sufficiently high, it becomes optimal to not convert into
defaulted stock, and then a higher stock loss rate increases the price.10 The behavior
of the prices PF and PB with respect to the stock loss rate is illustrated in Fig. 3.
Observe that the turning point at which the price is increasing in the stock loss rate

10This interesting feature can be explained by recalling that the time derivative Vt in the valuation
equations is increasing in the spatial term pηSVS and decreasing in the defaulted portion of the
portfolio p{Max(κS(1 − η), RX)}. At low R, the default portfolio portion is dominated by the
κ(1 − η) term where initially the fall with η dominates the rise from the pηSVS term. With high
R, the default portfolio portion is dominated by the RX term, so a high η (which decreases the
κS(1 − η) term) has less effect while the positive impact comes through the pηSVS term.
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Fig. 3. Relationship between price and stock loss rate for recovery of face value or bond value.

η occurs at a higher value of η when the recovery rate is lower. The difference in
price when the recovery assumption changes from reduced form to blended discount
is marginal at the start, but rises to 69 cents (0.6%) in the (possibly unrealistic) case
of R = 0.5. Even for R = 0.3 and η = 1, the discrepancy is significant (52 cents, or
0.47%). This difference is even higher for longer maturity bonds. Estimates of both
delta and gamma are affected, especially gamma which differs by up to 25%. Thus
the trader is significantly over-hedged under the recovery of face value assumption
if what is actually received is a proportion of market value upon default. These
findings indicate that recovery assumptions can have a significant effect on prices
and hedge ratios. Formulating the recovery aspect incorrectly could cost a trader
0.5% in price and double the estimate of gamma.

4. Uncertain Volatility and Delayed Calls

Many researchers have investigated issuers’ call policies in the empirical literature,
finding that they often wait until the conversion price is significantly higher than
the effective call price plus the premium on the put option before issuing the call. Of
the possible reasons for this “delayed call” phenomenon that have been proposed,
in Sec. 2, we have focused on the uncertainty surrounding the common share price
during the call notice period and the issuer’s aversion to a sharp price decline [1, 5,
15, 25, 33]. For this reason, an uncertainty in trader’s minds about the stock price
volatility during the life of the CB was introduced as a means of modeling issuer’s
call policies.
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Empirical results for the uncertain volatility model are now presented. First,
Sec. 4.1 gives arbitrage-free bounds for prices and hedge ratios of representative
CBs with various call and put features, assuming equity-linked hazard rates and
stochastic interest rates. Then, Sec. 4.2 focuses on the call notice period aspect of
the covenant, examining the call premiums that result with and without explicitly
modeling the issuer’s fear of a busted call. Finally, Sec. 4.3 examines a close to call
CB, finding very significant call premiums arising from higher volatility uncertainty
during the notice period.

4.1. Uncertain equity volatility

Two different contracts are considered to show how uncertainty in long-term equity
volatility can affect the price and hedge ratios of CBs. Security A is out of the
money, relatively long maturity (12 years), callable at 3 years but only at a price
considerably exceeding the conversion price, and the volatility band is conservative.
Security B is closer to call (in 1 year) and of 6-year maturity but we allow for a
large uncertainty band for σS . Securities A and B both pay monthly coupons of 2%
(annualized) and each have no notice period for the call. Table 6 summarizes the
details of each security and Table 7 examines the effect of uncertainty in volatility
on prices and hedge ratios by comparing certain volatility results with those from
the uncertain volatility model. In the latter case, best and worst prices are reported
in the last two columns of the Table 7. Stochastic interest rates are assumed, with
CIR parameters (a, b, σr, ρs,r) = (0.02, 0.8, 0.25, 0.2). We also report “delta-rho”,
the second derivative of the CB price with respect to S and r, denoted ∆ρ in
the table.

Security A: Due to the negative gamma for this security, the certain volatility
CB price is decreasing in volatility in the range. Most strikingly, even though the
arbitrage-free price band provided by the best and worst uncertain volatility prices is
quite narrow, not a single certain volatility price in the range comes to within $0.85
of these bounds. Thus the arbitrage-free range provides strong insurance for different
volatility realizations in the stipulated range. Interestingly, in approximately 39%
of the cases for best case pricing, the lowest volatility in the band was chosen in the
numerical algorithm, alluding to the fact that the gamma frequently switches sign
in the uncertain volatility model and that the delta-rho term becomes dominant in
certain regions.11

Security B: The second instrument is closer to call (conversion price is $80
versus the call price which is $120) and of shorter term than security A. Although
a wide volatility band σS(t) ∈ [0.2, 0.4] is employed and we would expect broad

11In a typical grid (with say 800 time-steps, 30 r-steps, and 200 S-steps) there are 4,884,000
volatility switching possibilities. Best volatility pricing with deterministic interest rates yields a
price of $86.540, with 4,211 more switches to the “high” volatility case. Including stochastic interest
rates appears to contribute 0.2% fewer switching decisions to the higher volatility regime as the
∆ρ term dominates the Γ term.
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442 A. B. Yiǧitbaşioǧlu & C. Alexander

T
a
b
le

6
.
C

B
co

n
tr

a
ct

s
u
se

d
in

u
n
ce

rt
a
in

v
o
la

ti
li
ty

ex
a
m

p
le

s.

S
e
c
u
ri

ty
A

C
a
sh

F
lo

w
s

S
e
c
u
ri

ty
B

C
a
sh

F
lo

w
s

S
e
c
u
ri

ty
C

C
a
sh

F
lo

w
s

S
e
c
u
ri

ty
D

C
a
sh

F
lo

w
s

M
a
tu

ri
ty

1
2
.0

F
a
c
e

$
1
0
0

M
a
tu

ri
ty

6
.0

F
a
c
e

$
1
0
0

M
a
tu

ri
ty

7
.0

F
a
c
e

$
1
0
0

M
a
tu

ri
ty

2
.0

F
a
c
e

$
1
0
0

κ
1
.4

C
o
u
p
o
n

0
.0

2
κ

0
.8

C
o
u
p
o
n

0
.0

2
κ

1
.0

C
o
u
p
o
n

0
.0

4
κ

1
.0

C
o
u
p
o
n

0
.0

4

γ
0
.0

2
F
re

q
u
e
n
c
y

1
2

γ
0
.0

2
F
re

q
u
e
n
c
y

1
2

γ
0
.0

2
F
re

q
u
e
n
c
y

2
γ

0
.0

2
F
re

q
u
e
n
c
y

2

σ
s

0
.2

6
–
0
.3

4
σ

s
0
.2

0
–
0
.4

0
σ

s
0
.2

2
–
0
.2

8
σ

s
0
.3

5
–
0
.4

5

G
ri

d
D

im
e
n
si

o
n
s

C
re

d
it

M
o
d
e
l

G
ri

d
D

im
e
n
si

o
n
s

C
re

d
it

M
o
d
e
l

G
ri

d
D

im
e
n
si

o
n
s

C
re

d
it

M
o
d
e
l

G
ri

d
D

im
e
n
si

o
n
s

C
re

d
it

M
o
d
e
l

S
m

a
x

$
1
0
0
0

p
0
.0

4
S

m
a
x

$
2
0
0
0

p
0
.0

4
S

m
a
x

$
1
0
0
0

p
0
.0

2
S

m
a
x

$
1
0
0
0

p
0
.0

2

r
m

a
x

0
.2

0
η

0
.2

r
m

a
x

0
.2

0
η

0
.2

r
m

a
x

0
.2

0
η

0
.8

r
m

a
x

0
.2

0
η

0
.8

N
2
0
0
0

R
0
.2

N
8
0
0

R
0
.2

N
2
0
0
0

R
0
.2

N
2
0
0
0

R
0
.2

M
1
0
0

M
2
0
0

M
1
0
0

M
1
0
0

L
2
0

L
4

L
2
0

L
2
0

C
a
ll

a
n
d

P
u
t

F
e
a
tu

re
s

C
a
ll

a
n
d

P
u
t

F
e
a
tu

re
s

C
a
ll

a
n
d

P
u
t

F
e
a
tu

re
s

C
a
ll

a
n
d

P
u
t

F
e
a
tu

re
s

T
im

e
P

ri
c
e

C
a
ll
/
P

u
t

T
im

e
P

ri
c
e

C
a
ll
/
P

u
t

T
im

e
P

ri
c
e

C
a
ll
/
P

u
t

T
im

e
P

ri
c
e

C
a
ll
/
P

u
t

3
.0

1
6
0
.0

C
a
ll

1
.0

1
2
0
.0

C
a
ll

3
.0

o
n
w

a
rd

s
1
5
0
.0

C
a
ll

1
.0

o
n
w

a
rd

s
1
1
0
.0

C
a
ll

4
.0

9
6
.0

P
u
t

4
.0

9
5
.0

P
u
t

5
.0

1
0
2
.0

P
u
t

2
.0

−
τ

∞
(τ

=
1
−

4
m

th
s)

8
.0

1
0
1
.0

P
u
t

v
a
ri

e
s

v
a
ri

e
s

P
u
t

7
.0

−
τ

∞
C

a
ll

(τ
=

1
−

4
m

th
s)



May 9, 2006 16:9 WSPC-104-IJTAF SPI-J071 00357

Pricing and Hedging Convertible Bonds 443

T
a
b
le

7
.
C

o
m

p
a
ri

so
n

o
f
ce

rt
a
in

a
n
d

u
n
ce

rt
a
in

v
o
la

ti
li
ty

m
o
d
el

s.

S
ec

u
ri

ty
A

C
o
n
st

a
n
t

V
o
la

ti
li
ty

U
n
ce

rt
a
in

V
o
la

ti
li
ty

0
.2

6
0
.2

7
0
.2

8
0
.2

9
0
.3

0
0
.3

1
0
.3

2
0
.3

3
0
.3

4
B

es
t

W
o
rs

t

P
ri

ce
8
5
.8

9
1

8
5
.8

2
9

8
5
.7

5
3

8
5
.6

6
5

8
5
.5

6
6

8
5
.4

5
8

8
5
.3

4
3

8
5
.2

2
2

8
5
.0

9
7

8
6
.8

3
9
5

8
4
.2

3
7

∆
1
.1

8
9
1

1
.1

9
7

1
.2

0
4

1
.2

1
1

1
.2

1
7

1
.2

2
3

1
.2

2
8

1
.2

3
3

1
.2

3
7

1
.2

1
3
6

1
.2

1
9

Γ
(×

1
0
−

3
)

−4
.3

3
−4

.2
6

−4
.1

6
−4

.0
4

−3
.9

1
−3

.7
6

−3
.6

1
−3

.4
5

−3
.2

9
−4

.1
5

−3
.4

6
ρ

−3
0
.6

4
−3

0
.1

0
−2

9
.5

7
−2

9
.0

6
−2

8
.5

6
−2

8
.0

8
−2

7
.6

1
−2

7
.1

5
−2

6
.7

1
−3

0
.4

2
−2

6
.6

8
ρ
∆

−0
.1

5
3

−0
.1

5
1

−0
.1

4
8

−0
.1

4
4

−0
.1

3
9

−0
.1

3
3

−0
.1

2
7

−0
.1

2
0

−0
.1

1
3

−0
.1

4
8
6

−0
.1

3
0
5

S
ec

u
ri

ty
B

C
o
n
st

a
n
t

V
o
la

ti
li
ty

U
n
ce

rt
a
in

V
o
la

ti
li
ty

R
=

0
.2

0
.2

0
0
.2

2
0
.2

4
0
.2

6
0
.2

8
0
.3

0
0
.3

2
0
.3

4
0
.3

6
B

es
t

W
o
rs

t
η

=
0
.2

P
ri

ce
8
9
.5

1
7

8
9
.9

0
6

9
0
.2

5
6

9
0
.5

6
7

9
0
.8

4
1

9
1
.0

8
3

9
1
.2

9
5

9
1
.4

8
1

9
1
.6

4
3

9
2
.4

1
3
5

8
9
.1

4
1
5

∆
0
.3

6
3
1

0
.3

7
3

0
.3

8
2

0
.3

8
9

0
.3

9
6

0
.4

0
4

0
.4

1
0
7

0
.4

1
8

0
.4

2
6

0
.4

2
7
9

0
.3

8
3
5

Γ
(×

1
0
−

3
)

1
8
.5

5
1
5
.5

2
1
3
.3

9
1
2
.1

1
1
.4

8
1
1
.3

5
1
1
.5

3
1
1
.8

9
1
2
.3

1
1
7
.7

6
6
.6

3
ρ

−6
6
.8

7
−6

6
.1

2
−6

5
.4

2
−6

4
.7

3
−6

4
.0

3
−6

3
.3

1
−6

2
.5

6
−6

1
.7

9
−6

1
.0

0
−6

1
.6

8
3

−6
4
.6

7
ρ
∆

0
.3

4
8

0
.3

3
1

0
.3

2
0

0
.3

1
5

0
.3

1
3

0
.3

1
3

0
.3

1
3

0
.3

1
2

0
.3

1
1

0
.3

5
6
8

0
.2

2
3
3

S
ec

u
ri

ty
B

C
o
n
st

a
n
t

V
o
la

ti
li
ty

U
n
ce

rt
a
in

V
o
la

ti
li
ty

R
=

0
.5

0
.2

6
0
.2

7
0
.2

8
0
.2

9
0
.3

0
0
.3

1
0
.3

2
0
.3

3
0
.3

4
B

es
t

W
o
rs

t
η

=
0
.7

P
ri

ce
9
1
.3

3
5

9
1
.9

4
4

9
2
.5

1
0

9
3
.0

3
4

9
3
.5

2
1

9
3
.9

7
4

9
4
.3

9
8

9
4
.8

0
0

9
5
.1

7
1

9
5
.9

8
7
5

9
1
.2

6
0
6

∆
0
.2

9
1

0
.2

9
9

0
.3

0
6

0
.3

1
3

0
.3

1
9

0
.3

2
5

0
.3

3
3

0
.3

3
8

0
.3

4
5

0
.3

5
4
7
7
9

0
.2

9
5
2
1
2

Γ
(×

1
0
−

3
)

4
0
.4

6
3
6
.4

6
3
3
.5

9
3
1
.6

8
3
0
.5

1
2
9
.8

8
2
9
.6

2
9
.5

4
2
9
.5

8
0
.0

0
3
1
2
7

0
.0

0
3
8
0
3

ρ
−7

2
.0

5
−7

1
.7

1
−7

1
.3

8
−7

1
.0

3
−7

0
.6

5
−7

0
.2

3
−6

9
.7

9
−6

9
.3

1
−6

8
.8

1
−6

8
.3

4
2

−7
1
.6

7
0
6

ρ
∆

0
.5

2
9

0
.5

0
4

0
.4

8
6

0
.4

7
5

0
.4

6
8

0
.4

6
3

0
.4

5
8

0
.4

5
4

0
.4

5
0

0
.4

5
0
2
9

0
.5

0
9
3



May 9, 2006 16:9 WSPC-104-IJTAF SPI-J071 00357
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price bounds, the proximity to call is effective in narrowing the bounds. Thus the
offsetting effect of the call feature is useful for generating viable trading prices from
the model.12 The difference between the best and worst price is $3.27, which is
only just higher than for security A, even though there we assumed a tighter band
for volatility (σS(t) ∈ [0.26, 0.34]). Again, the eventual volatility realization is well
insured against. Even assuming a constant 40% volatility the best price (i.e., the
trader’s offered price) exceeds the constant volatility price by more than 50 cents,
that is, 0.54%. We also look at the effect of recovery assumptions by increasing the
face recovery rate to R = 0.5 of the face value and increasing the stock loss rate to
η = 0.7 in the lower part of Table 7. Thus the bondholder gets the larger of $50 or the
conversion value into the defaulted stock price after a 30% downward jump. While
a larger amount of face value is recovered the stock price falls sharply on default.
For high η we expect that the large volatility uncertainty band affecting the equity-
linked hazard rate term p(S) could possibly cause widening of arbitrage-free price
bounds.13 Arbitrage-free upper and lower prices in the band now differ by around
$4.7 (nearly 5%). While larger than before, it should be borne in mind that the
imposed volatility bands were quite wide.

In summary, the introduction of volatility uncertainty provides realistic
arbitrage-free bounds for prices and hedge ratios of convertible bonds. The tightness
of these bounds depends on the degree of uncertainty held over long-term volatility
and how close the security is to call. Even with much uncertainty about volatility,
call features provide a useful mechanism for generating viable trading prices that
incorporate the trader’s uncertain views on the stock price volatility.

4.2. Call notice periods

The above results were for CBs without call notice periods. Since call notice periods
are most often included in CB covenants, we give examples that show how uncertain
volatility during a call notice period can significantly increase the call premium.
Security C is typical of many new issues. It is a 7-year semi-annual 4% coupon
bond, with a high price ($150) no-notice call at 3 years, and a put at 5 years. In
addition, it is unconditionally callable at any time after 3 years, with a clean price of
$150. If it calls, the issuer is required to give a notice period of length τ . We consider
three possibilities, effectively modeling three different securities, according as τ is
one, two or four months. Since it not possible to call within τ months of expiry, in
the basic terms for this security (see Table 6 above), we have followed convention
and set the call price to infinity at time 7.0 − τ . The chosen CIR parameters are

12Other means of narrowing the price bounds are possible. One of these is to combine the CB in
an options hedge portfolio and price the portfolio. Due to volatility diversification effects the price
bounds will be narrower. This idea was formalized by the Lagrangean uncertain volatility model
due to Avellaneda and Paras [7].
13The volatility of the equity Brownian motion driven is equal to ασS. We refer to p. 5 in Andersen
and Buffum [3] who have pointed this out.
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(a, b, σr, ρs,r) = (0.06, 0.8, 0.25,−0.3), so this time we assume a negative correlation
between interest rates and stock price.

Table 8 reports the effect of uncertain volatility and length of notice period on
both prices and hedge ratios. In this and all following tables the reported prices are
the trader’s bid price (i.e., the “worst price”) with the notice period substitution
asset being always “best priced”.14 Four cases are considered:

(a) certain volatility at 25%
(b) certain volatility at 25% and uncertain volatility (18% – 32%) only during the

notice period
(c) uncertain volatility (22% – 28%) throughout the life of the CB
(d) uncertain volatility (22% – 28%) with volatility becoming more uncertain

(18% – 32%) during the notice period

a) Certain volatility: The first column of Table 8 assumes that the firm calls
as soon as the conversion price reaches the dirty call price. Adding a one-month
notice increases the price by between 40.4 cents (one-month notice) and 85.4 cents
(for a four-month notice period). As important, the notice period increases both
delta and rho, because the notice period effectively increases the expected lifetime
by raising the optimal stock price at which to call. For a four-month notice period,
Table 8 shows that, in addition to underestimating its price, the holder of the CB
would be under-hedged in stock by nearly 1% if the notice period were not taken
into account.

The optimal stock price S∗ at which the issuer should call is shown in Fig. 4.
With a four-month notice period, the average call premium for this example is 27.7%
above the clean call price ($150). Note that this is in broad agreement with the call
premia assumed in Asquith [4] and Bingham [11], who use 20% for a 30-day notice
period. We also observe that the implied call premium can jump significantly (by
up to 60%). Figure 4 reveals two notable things: first, S∗ falls sharply just before
a coupon date. The firm is willing to call at a much lower price (still exceeding the
dirty call price, which is between 150 and 152 at any given time) as it can force
the bondholder to give up accrued interest (or coupon) should he convert. This is
colloquially referred to as the “screw clause”. Second, the issuer will never call after
the last coupon has been paid. This is due to the fact that the cash-flow advantage
is in the issuer’s favor — it is no longer has to pay coupons but it would have to
pay dividends if the investor converts due to the call. There is also no rationale for
offering the substantially higher dirty call price as a floor when the bondholder is
entitled only to the face value as floor without the call.

14We report only the buyer’s price as the seller’s case is identical and has been discussed earlier.
The substitution asset is “best priced” to maximize the value of the put option that the CB issuer
gives the bondholder for free if he calls the bond for early redemption. If volatility turns out to be
high during the notice period the substitution asset will be very precious. As the issuer is averse
to busted calls, it should price this asset in the most expensive way possible.
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Fig. 4. Optimal call price with certain volatility (4 months notice period).

(b) Uncertain volatility only during the notice period. The convertible is priced
assuming constant volatility of 25%. However the substitution asset is priced assum-
ing an uncertain volatility band of [0.18, 0.32]. The prices and hedge ratios are
reported in the columns headed (b) in Table 8. Introducing volatility uncertainty
only during the notice period increases the bid price, but only marginally: the sub-
stitution asset affects prices only by 6 to 8 cents. That is because in this example,
the clean call price ($150) is far from the current spot conversion price ($100). We
shall see below that the uncertain volatility effects on closer to call CBs can be
much more significant.

(c) Uncertain volatility (same for substitution asset) and (d) uncertain volatil-
ity (higher for substitution asset). Certain interesting properties are seen in the
columns labeled (c) and (d) of Table 8. Although slightly higher bid prices are
obtained when volatility uncertainty is greater for the substitution asset, uncertain
volatility throughout the life of the CB tends to reduce the bid price (it is 1.2%–
1.3% less than the constant volatility price) and this effect increases with the length
of notice period. Volatility uncertainty also increases the hedge ratios, particularly
when notice periods are short.

The main effect of notice period uncertain volatility for far from call CBs is on
the call premium. Figure 5 illustrates the optimal call price for security C when a
2-month notice period applies. The lower curve corresponds to the case where the
uncertain volatility band for pricing the substitution asset remains the same during
the notice period. The average call premium compared to the clean call price of
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Fig. 5. Optimal call prices with uncertain volatility (far from call case).

$150 is 27.7%. The upper curve corresponds to the case where a wider uncertain
volatility band is employed to price the substitution asset, as could be the case when
the issuer fears a “busted call”. The average call premium is much higher, at 38.4%.
This explains the common practice of issuers that delay call until the conversion
price is far greater than one would expect. Clearly the issuer’s fear of a busted call,
which is captured here by increasing volatility uncertainty during the notice period,
can be an important factor.

4.3. Close to call CBs

Security C was far from call, so the substitution asset had little effect on prices,
even though the call premium rose substantially when additional uncertainty in
volatility was introduced during the notice period. When the CB is close to call,
the instrument will be considerably more sensitive to assumptions regarding the
notice period and the pricing of the substitution asset.

Security D is a 2-year bond, not putable but callable from the first year (see
Table 6). Again we examine notice periods of 1, 2 or 4 months. The clean call
price is $110.0 and our worst CB price is computed assuming that the stock price
volatility lies in the range 35%–45%. Table 9 gives the bid prices and hedge ratios
for security D under two different assumptions, according as we do or not assume
a wider uncertainty band (35%–55%) for the pricing of the substitution asset. The
price difference in this Table is in the range $0.4 to $0.52, which is comparable in
size to the entire notice period effect without uncertain volatility. In fact, assuming
a wider band of uncertainty during the notice period effectively doubles the average
model call premium. It appears reasonable in this light that even moderately wider
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Table 9. The effect of uncertain volatility with call notice periods (close to call case). I: Two
regimes of Uncertain Volatility: (0.35, 0.45) for CB and (0.35, 0.55) for substitution asset; II:
Uncertain Volatility (0.35, 0.45) throughout life of CB.

1 month 2 months 4 months

I II I II I II

Price 115.124 114.724 115.852 115.395 116.689 116.187
∆ 0.6604 0.6575 0.6699 0.6631 0.6818 0.6785
Γ 0.0065 0.0068 0.0061 0.0064 0.0060 0.0060
ρ −39.143 −38.682 −40.351 −39.748 −41.153 −40.932
ρ∆ 0.6713 0.6891 0.6336 0.6569 0.6003 0.6109

Average % diff of S* to 12.25% 5.52% 48.5% 22.5% 52.1% 23.5%
clean call price
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1.921.841.771.691.621.541.471.391.321.241.171.091.02
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Fig. 6. Optimal call prices with uncertain volatility (close to call case).

uncertainty bands during the notice period have a substantial ability to capture
observed call premia.

Figure 6 illustrates the optimal call prices for security D under the two volatil-
ity uncertainty assumptions and with a 2-month notice period. As in Fig. 5, the
upper curve corresponds to the case where a wider band for volatility uncertainty
is employed to price the substitution asset. Clearly the call premium increases as
the CB approaches expiry. There is little incentive to call the bond for redemption
when it has little time left to mature, because there is less time value to “kill” by
forcing conversion, so the issuer will only consider calling the bond when the share
price is significantly above the call price. The average call premium for the upper
curve (compared to the clean call price) is 12.25% and for the lower curve is 5.5%.
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Note that in this close to call example, the accrued interest effects are noticeable.
The implied call policy actually falls below the effective call price by as much as
$5.02. The issuer may call the bond for redemption when the stock price is below
the effective call price because thereby it forces the bondholder to forfeit the accrued
interest on the coupon.

5. Summary and Conclusions

This paper first examined the effect of call and put features, different assumptions
about default behavior and recovery assumptions on the prices and hedge ratios of
convertible bonds. We have employed a multi-factor model with stochastic inter-
est rates and equity-linked hazard rates. The theoretically appealing framework of
Ayache et al. [8] was easily extended to stochastic interest rates and, to value cross-
currency convertibles, i.e., to include foreign exchange risk. Because the prices and
hedge ratios of convertible bonds are quite sensitive to the call feature, much care
has been taken when formulating this aspect of the contract. The PDE approach
we employ is simple to implement and requires relatively few instruments for cali-
bration. The model is implemented using unconditionally stable techniques, which
are not subject to the numerical limitations associated with lattice methods. Then
the empirical features of the model were illustrated for a range of realistic examples
and some interesting properties have been identified.

Our empirical examples first examined the valuation effects of call and put
features — and call notice periods in particular — when the stock price volatility is
a known constant. Interest rate uncertainty was found to have a small but noticeable
effect, especially when the conversion ratio is low and the correlation between stock
price and interest rates is negative. Assumptions about recovery and the default
process are crucial and these dominate the price effects of simple call and put
features, although call and put features do have a more pronounced effect on prices
and hedge ratios when there is a high probability that the issuer defaults. Prices
are far lower under the assumption of equity-linked rather than constant hazard
rates, and when recovery rates decrease. The main effect of reducing recovery rates
is a significant decrease in stock deltas, whatever one assumes about stock loss
and default behavior. Clearly an accurate modeling of default and recovery appears
essential for traders to price these bonds properly and to hedge their positions
effectively.

Because of their long maturity, convertible bonds prices and hedge ratios are
very sensitive to assumptions on the stock price volatility, and this has been a main
focus of this paper. Since the uncertainty about long-term volatility are particularly
important, this paper has used the pioneering framework first introduced Avellaneda
et al. [6] to include volatility uncertainty in the valuation model for convertible
bonds. The addition of volatility uncertainty to the model allows traders to provide
bounds for price and hedge ratios that are arbitrage-free, and these bounds will
narrow as the security moves closer to call and/or as they become more certain
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about volatility. Call and put features have a more pronounced effect on prices
and hedge ratios when the stock price volatility is high and we argue that the
issuer’s delayed call policy can be intuitively explained by their uncertainty about
stock volatility. The issuer’s fear of a “busted call” during the call notice period can
explain why the issuer delays calling until the stock price is very substantially above
the effective call price, as was suggested by Ingersoll [33] and developed Asquith
[4], Butler [15], Altintiǧ and Butler [1], Grau et al. [25] and others. We explicitly
model the issuer’s fear of “busted calls” by increasing volatility uncertainty during
the call notice period and show that the observed delay in issuer’s call policies is,
in fact, optimal in this framework. In summary, we have shown how uncertainty in
the minds of the traders about the stock price volatility, and increased uncertainty
during the call notice period, can be included in convertible bond valuation models.
Within a multi-factor framework, with sophisticated modeling of interest rates,
default and recovery, we have introduced volatility uncertainty as a mechanism to
explain the delayed call features of issuer’s optimal call policies.
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