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This paper examines the ability of several different continuous-time one- and two-factor jump-diffusionmodels to
capture the dynamics of the VIX volatility index for the period between 1990 and 2010. For the one-factor models
we study affine and non-affine specifications, possibly augmented with jumps. Jumps in one-factor models occur
frequently, but add surprisingly little to the ability of the models to explain the dynamic of the VIX. We present a
stochastic volatility of volatility model that can explain all the time-series characteristics of the VIX studied in this
paper. Extensions demonstrate that sudden jumps in the VIX are more likely during tranquil periods and the days
when jumps occur coincidewithmajor political or economic events. Using several statistical and operational met-
rics we find that non-affine one-factor models outperform their affine counterparts and modeling the log of the
index is superior to modeling the VIX level directly.

© 2013 Published by Elsevier Inc.

1. Introduction

As a measure of volatility implied in traded equity index option
prices, volatility indices have attracted research for almost a decade.
The diverse problems being investigated include: the constructionmeth-
odology (Carr &Wu, 2006; Jiang & Tian, 2007); their use in constructing
trading strategies (Konstantinidi, Skiadopoulos, & Tzagkaraki, 2008) and
for describing the dynamic behavior of equity return variance (Jones,
2003;Wu, 2011); and their information content regarding future volatil-
ity (Jiang & Tian, 2005), volatility and jump risk premia (Duan & Yeh,
2010), and the jump activity of equity returns (Becker, Clements, &
McClelland, 2009).

One of the most important strands of the literature focuses on the
data generating process of the index itself. This is because a realistic
model for volatility index dynamics is crucial for accurate pricing and
hedging of volatility derivatives. The liquidity of these contracts has in-
creased dramatically since the international banking crisis of 2008 and a
wide range of futures, options and swaps is now available for trading.
Market participants use these instruments for diversification, hedging
options and pure speculation. To this end, several pricing models have
been considered (e.g. Grunbichler & Longstaff, 1996; Whaley, 1993 or

Detemple & Osakwe, 2000; Mencia & Sentana, in press; Psychoyios,
Dotsis, & Markellos, 2010).

Empirical evidence regarding the data generating process of volatil-
ity indices is, however, still scarce. To date, the only comparative study
of alternative data generating processes is Dotsis, Psychoyios, and
Skiadopoulos (2007) who investigate the performance of several affine
one-factor models using a sample from 1997 to 2004. They find that a
Merton-type jump process outperforms other models for a wide range
of different volatility indices. Extensions of some of the models are
also considered in Psychoyios et al. (2010). In general, there is little dis-
agreement in the literature regarding some important characteristics of
volatility, such as the need for a mean-revering process to account for a
long-term equilibrium value.2 There is also evidence that volatility
jumps constitute a relatively large fraction of the variability of volatility
indices. Psychoyios et al. (2010) argue that these jumps are an impor-
tant feature and show that omitting them from the data generating pro-
cess can lead to considerable differences in VIX option prices and hedge
ratios.

Jumps in volatility may also be important for modeling equity index
returns, as for instance in Eraker, Johannes, and Polson (2003). Yet
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curiously, there is a large discrepancy between the volatility jump in-
tensities estimated using two-factor models on equity index time series
and one-factor models on volatility index time series. The most impor-
tant example is the difference between the S&P 500 index and its vola-
tility index VIX. Eraker et al. (2003) estimate about 1.5 volatility jumps
per year when based on equity index data, yet Dotsis et al. (2007) esti-
mate between 28 to 100 volatility jumps (depending on the model)
using the VIX. Although the estimates are not directly comparable due
to the different sample periods and the different modeling approaches,
their huge differences are still puzzling.

This paper makes several novel contributions to understanding the
continuous-time dynamics of volatility indices. In particular, we extend
the data and the methodology of other empirical research on volatility
index dynamics in four important ways. Firstly, we study the VIX over
a long-time horizon of more than 20 years which includes the recent
banking and credit crisis. Using a long time series covering several pe-
riods of market distress is essential if we are to uncover all dimensions
of its historical behavior. Moreover, we have observed several different
market regimes over the last two decades, and we shall seek a model
that can explain the VIX dynamics during all types of market circum-
stances. The recent crisis period is of particular importance, as this
prolonged period of high volatility revealed vital information regarding
the extreme behavior of volatility. Understanding this behavior is partic-
ularly important, as it influences numerous aspects of risk and portfolio
management.

Secondly, we depart from standard affine model specifications
and study the dependence of the diffusion part on the level of the
index. Non-affine models have recently attracted much attention,
for example Christoffersen, Jacobs, and Mimouni (2010) find that
non-affine specifications outperform affine processes in an equity
index option pricing framework and Chourdakis and Dotsis (2011)
confirm these findings using a joint-time series of the VIX and the un-
derlying S&P 500 index returns. In our context, the chief motivation
to study these models is that a stronger dependence of the diffusion
term on the VIX level might decrease the jump intensity of the
models. Extremely high jump intensities may be problematic because
one loses the economic reasoning that jumps cover large, unexpected
movements in the time-series. The estimation of non-affine models is,
however, more difficult to handle, as discrete-time transition probabil-
ities or characteristic functions are generally unavailable in closed form.
Our approach includes the estimation of these processes with a
Markov-chain-Monte-Carlo sampler using a data augmentation tech-
nique as in Jones (1998). This procedure allows us to study a wide
range of processes, affine and otherwise, within the same econometric
framework.

The third and perhaps themost important contribution is the exten-
sion of existing volatility dynamic models to the case of stochastic vola-
tility of volatility (stochastic vol-of-vol hereafter). This feature has, to our
knowledge, not been studied for the time-series of volatility indices be-
fore, but it yields very attractive properties: increasing variability can be
modeled as a persistent vol-of-vol component rather than indirectly via
an increased activity of the jump part.3 Our results are interesting
because this distinction allows for two separate categories of shocks:
transient (unexpected) jumps and outliers due to persistent high vola-
tility of the VIX. We find that considering such an extension is of
first-order importance and that the estimated variance process for VIX
is extremely erratic and mean-reverts very quickly. We further investi-
gate whether both jumps and stochastic vol-of-vol are necessary but
our results regarding this issue are mixed.

Fourthly, we provide extensive simulation results that allow us to
gage the absolute performance of all models under consideration. We

use the concept of predictive p-values to study a wide range of charac-
teristics of all the processes under consideration. This is crucial, as
previous studies focused mainly on the relative performance of the
models. We find that the stochastic vol-of-vol model generates dy-
namics that are, of all the models considered, most closely in line
with the observed VIX time series. Finally we provide empirical evi-
dence using a scenario analysis exercise.

The new CBOE volatility index constructionmethodology provides a
close link between instantaneous variance and the VIX index. In pure
diffusionmodels, the squared VIX is the risk-neutral expectation of inte-
grated variance over a 30-day horizon. This fact is very useful not only to
establish a theoretical link between the two quantities, but also to
model S&P 500 index options and derivatives written on the VIX in a
consistent manner (see Sepp, 2008; Zhang & Zhu, 2006 or Zhu & Lian,
2012). In this paper, we model the VIX index directly without explicitly
specifying instantaneous variance dynamics. While it would be desir-
able tomodel various derivativemarkets with the same underlying sto-
chastic process, whether standard option pricing models can provide a
reasonable fit to several markets at the same time is an open research
question. For instance, Broadie, Chernov, and Johannes (2007) report
relatively large option pricing errors for the Heston model when
time-series consistency is imposed on the structural parameters.
Much in the sameway it is not evident if equity and VIX derivativemar-
kets can be unified with one stable parametric model. In addition,
modeling the VIX via the instantaneous variance process would require
tospecify both the real-world and the risk-neutral dynamics. Our goal is
to examine alternative processes for the VIX index directly and to pro-
vide evidence regarding the type of process that is needed to explain
its empirical characteristics.

We proceed as follows: Section 2 introduces the affine and non-
affine one-factor models used; Section 3 describes our econometric
estimation methodology. Section 4 provides details on the data set. In
Section 5 we provide estimation results for various alternative
one-factor processes. Section 6 introduces and presents results for the
stochastic vol-of-vol model. We provide a riskmanagement application
in Section 7 and Section 8 concludes.

2. Model specifications

Mostmodels proposed for describing volatility or variance dynamics
agree on itsmean-reverting nature.4 This feature reflects the belief that,
although volatility can temporarily fluctuate widely, it will never wan-
der away too much from its long-term equilibrium value. The stronger
the deviation from this value the stronger the drift of the process pulls
the process back toward its long-term mean. Constant and zero drift
components have been criticized for ignoring this feature and hence
are – at least in the long run – regarded an unrealistic description of vol-
atility. Mean reverting processes are now an accepted starting point for
volatility and variance modeling.

The diffusion term of a continuous-time process is often chosen so
that the model falls into the class of affine processes. To model the VIX
and other volatility indices, Dotsis et al. (2007) rely on the square-root
and a Merton-type jump model for volatility and Psychoyios et al.
(2010) also consider an Ornstein–Uhlenbeck process to model the log
of VIX. In this paper, we study several extensions of these models. For
modeling both VIX and its log process, we allow the diffusion function
to be proportional to the process. Variants of these models have
been successfully applied in other contexts, such as option pricing or
spot index modeling (see Chernov, Gallant, Ghysels, & Tauchen, 2003
or Christoffersen et al., 2010). Especially for option pricing applications
researchers often favor square-root specifications, as they retain

3 Mencia and Sentana (in press) also find that a stochastic vol-of-vol model has
favourable VIX option pricing performance, however their model differs from ours as
they model the vol-of-vol process with a Levy process that is independent of the VIX
index dynamics.

4 Only few exceptions with non-reverting or zero drift components have been pro-
posed in the literature, the SABR model of Hagan, Kumar, Lesniewski, and Woodward
(2002) and the Hull and White (1987) model being the most popular.
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tractabilitywith analytic pricing formulae for vanilla options, and as such
they are relatively easy to calibrate to themarket prices of these options.

Another feature that has been found essential in volatility modeling
is the inclusion of jumps. Eraker et al. (2003) (using return data) and
Broadie et al. (2007) (using both return and option data) find severe
misspecifications when jumps in volatility are omitted and document
the outperformance of variance specificationswith exponential upward
jumps. Dotsis et al. (2007) report similar results for volatility indices.
Whereas previously-mentioned research is based on the assumption
that jumps occur as i.i.d. random variables, there is also evidence that
jumps in VIX occur more frequently in high volatility regimes (see
Psychoyios et al., 2010).

In order to assess the importance of the characteristics outlined, we
employ a general one-factor model in our empirical analysis that ac-
commodates all of the features previously mentioned. Extensions to
these models will be considered in Section 6. First we study models
that are nested in the following specification:

dXt ¼ κ θ−Xtð Þdt þ σXb
t dWt þ ZtdJt ð1Þ

where X either denotes the value of the volatility index or its logarithm,
κ is the speed ofmean reversion, θ determines the long termvalue of the
process and σ is a constant in the diffusion term. The exponent b is set
either to one-half or one for the level of the index, and to zero or one
for the log process. Note that if b=1 in the log process, VIX is bounded
from below by one whereas the lower bound is zero in the other
models. As remarked by Chernov et al. (2003), this is a verymild restric-
tion for yearly volatility.5

In terms of jump distributions we assume that J is a Poisson process
with time varying intensity λ0+λ1Xt. For the jump sizes we consider
two alternatives. Firstly we employ an exponentially distributed jump
size, as this assumption is commonly applied to the variance in equity
markets. The exponential distribution has support on the positive real
axis, so it allows for upward jumps only, which guarantees that the pro-
cess does not jump to a negative value. The distribution is parsimonious
with only one parameter ηJ, representing both the expectation and the
volatility of the jump size, to estimate.We apply this jump size distribu-
tion to all models except for the log volatility model with b=0, for
which we use normally distributed jump sizes with mean μJ and stan-
dard deviation σJ because the support of this model is not restricted to
positive numbers and the log volatility may become negative.6

3. Econometric methodology

3.1. Estimation of jump-diffusion models

Several estimation techniques for jump-diffusion processes have
been proposed in the literature. In the context of volatility indices,
Dotsis et al. (2007) use conditional maximum likelihood methods to es-
timate the structural parameters of several alternative processes for six
different volatility indices. Psychoyios et al. (2010) apply the samemeth-
odology to the VIX and also include state dependent jump diffusion
models. In this paper, we adopt a Bayesian Markov-chain-Monte-Carlo
(MCMC) algorithmbecause this estimation technique has several advan-
tages over other approaches, particularly for the models we consider.7

Firstly, it provides estimates not only for structural parameters, but also

for unobservable latent variables such as the jump times and jump
sizes. These latent parameter estimates provide valuable information
for testing the model and shed light on whether key assumptions of
the model are reflected in our estimates. Secondly, our algorithm allows
one to handle non-affinemodels for which closed-form transition densi-
ties or characteristic functions are unavailable.

The center of interest for our analysis is the joint distribution of
parameters and latent variables conditional on the observed data. In
Bayesian statistics, this distribution is termed the posterior density
and is given by

p Θ; Z; J Xj Þ ∝ p X Θ; Z; Jj Þp Θ; Z; Jð Þðð

where thefirst density on the right is the likelihood of the observed data
conditional onmodel parameters and latent state variables and the sec-
ond density denotes the prior beliefs about parameters and latent state
variables, not conditional on the data. The vectorΘ collects all structural
parameters, and Z, J and X collect all jump sizes, jump times and VIX (or
log(VIX)) observations respectively.

Knowing the posterior density we can obtain point estimates and
standard errors of structural parameters, as well as the probability of
jump events and jump size estimates for each day in our sample. Prior
distributions are chosen such that they are uninformative, hence our
parameter estimates are driven by the information in the data and not
the prior.8 But there remain two questions to address: how to deter-
mine the likelihood, because a closed-formdensity can only be obtained
for some models of the affine class, and how to recover the posterior
density.

To obtain a closed-form likelihood we can approximate the evolu-
tion of the continuous-time process for the volatility index by a
first-order Euler discretization. Therefore between two time steps
the process evolves according to

Xtþ1 ¼ Xt þ
X1=h−1

i¼0

κ θ−Xtþih

� �
hþ

ffiffiffi
h

p
σXb

tþih εtþ iþ1ð Þh þ Ztþ iþ1ð ÞhJtþ iþ1ð Þh
h i

where h denotes the discretization step, εt denote standard normal var-
iates and the jump process is discretized by assuming that the event
Jt+h=1 occurs with probability h(λ0+λ1Xt). This approximation con-
verges (under some regularity conditions) to the true continuous-
time process as h approaches zero. Therefore choosing h to be small
should lead to a negligible discretization bias. But in reality the frequency
of the observed data cannot be chosen by the researcher. In our case data
are recorded daily and so the discretization bias could be substantial,
depending on the structural parameters of the model.9

A great advantage of theMCMCapproach is that it allows one to aug-
ment the observed data with unobserved, high-frequency observations,
a technique that has been applied to continuous-time diffusion and
jump-diffusion models in Jones (1998) and Eraker (2001). This way,
we treat data points between two observations as unobserved or miss-
ing data. Hence, even if the data set only includes daily values for the
VIX, we can estimate the parameters of the continuous-time process ac-
curately by choosing h small and augmenting the observed data. Here
there are two practical issues that need addressing. Firstly, decreasing
h leads to increasing computational cost and it also increases theparam-
eters to be estimated substantially. And secondly, the inclusion of many
data points makes it more difficult for the algorithm to filter out jump
times and jump sizes because the signaling effect of a large daily obser-
vation becomes weaker. Throughout this paper we use h=0.25. Jones

5 To avoid this one could also model not the VIX directly, but its value minus this
lower bound.

6 In fact, we have also estimated all models with both normally and exponentially
distributed jump size, so that we may gage the effect of this assumption on the model
performance. Since in some models the normal distribution can lead to negative VIX
values and we found only little improvements from this more general jump size distri-
bution, we report only results for one distribution in each model. All of our qualitative
conclusions are robust with respect to changing this jump size distribution.

7 MCMC methods in financial econometrics were pioneered in Jacquier, Polson, and
Rossi (1994).

8 Details about these distributions are provided upon request.
9 The discretization of the jump part, especially, may lead to a large bias because dai-

ly observations allow no more than one jump per day. According to the results in
Dotsis et al. (2007) volatility indices can jump far too frequently for this to be negligi-
ble. However, if the jump intensity is much lower, as in Eraker et al. (2003), a daily
discretization does not introduce any discernible error.
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(2003) reports that, for equity index data, taking h to be of this order re-
duces the discretization bias noticeably.

The posterior for our parameter estimation therefore includes the
augmentation of X by unobservable high-frequency observations Xu

and yields

p Θ; Z; J;Xu Xj Þ ∝ p X;Xu Θ; Z; Jj Þp Θ; Z; Jð Þ:��

Note that although we generate a distribution of each augmented
data point, we have no interest in the density of Xu itself, it is used
only to decrease the discretization bias.

The second question, of recovering the posterior density, is dealt with
by applying a Gibbs sampler (Geman & Geman, 1984). This approach
achieves the goal of simulating from the multi-dimensional posterior
distribution by iteratively drawing from lower-dimensional, so-called
complete conditional distributions. Repeated simulation of the posterior
allows one to estimate all quantities of interest, such as posterior means
and standard deviations for structural parameters and latent state
variables.The Gibbs sampler forms aMarkov chainwhose limiting distri-
bution (under mild regularity conditions) is the posterior density. More
precisely, step g in the Markov chain consists of:

1. Draw the latent variables: p(Xu(g)|Θ(g−1),Z(g−1), J(g−1),X)
p(Z(g)|Xu(g),Θ(g−1), J(g−1),X)
p(J(g)|Θ(g−1),Z(g),Xu(g),X)

2. Draw structural parameters: p(Θ(g)|Xu(g),Z(g), J(g),X)

The latent state vectors and structural parameters can be further
divided into blocks, so that we only need to draw from one-
dimensional distributions. Some of the univariate distributions are
of unknown form and we use a Metropolis algorithm for these.10

3.2. Model specification tests

In order to test different specificationswe employ a simple but pow-
erful test procedure. Taking a random draw of the vector of structural
parameters from the posterior distribution, we use this to simulate a
trajectory of the same sample size as the original VIX time series.
Given this trajectory, we calculate several sample statistics and compare
themwith the observed sample statistics obtained from the original VIX
time series. Applying this procedure several thousand timeswe obtain a
distribution for each statistic and for each model under consideration.
Finally, for each statistic and each model, we compute the probability
associated with the value of the statistic given by the observed
VIX time series under the model's distribution for the statistic. This
p-value reveals how likely the observed value of the statistic is,
according to the model. Very high or low p-values convey the model's
inability to generate the observed data. For more details on this type
of model specification testing procedure we refer to Rubin (1984),
Meng (1994), Gelman, Meng, and Stern (1996) and Bayarri and
Berger (2000).

It is common to use higher order moments to discriminate between
alternative specifications. For example, if the estimatedmodels are real-
istic descriptions of VIX dynamics, then in repeated simulations the
models should create kurtosis levels similar to the observed. We shall
choose a wide range of statistics that we deem important for modeling
volatility indices, including:11

– The descriptive statistics in Table 1 below except for the uncondi-
tional mean (because with a mean-reverting process the mean
only indicateswhether the start value is belowor above the last sim-
ulated value and this is of no interest). That is we opt for standard
deviation (stadev), skewness (skew) and kurtosis (kurt) and the

minimum (min) and maximum (max) of the process. Note that
these statistics indicate whether a model can capture the standard-
izedmoments up to order four, aswell as the extrememovements of
the VIX.

– Statistics on the highest positive and negative changes in the index
(minjump and maxjump), the average over the 10 largest positive
changes (avgmax10) and the average over the 10 largest negative
changes (titavgmin10). These statistics shed light on whether the
model can replicate the observed outliers.12

– In order to investigate the clustering of the outliers we use the
month (20 trading days) with the highest sum of absolute changes
in the process (absmax20). Likewise we report the statistic for the
month with the least absolute changes (absmin20). Taken together
these two statistics reflect our belief that the model should be able
to reproduce periods of low activity and periods of high uncertainty
in the level of the VIX.

– Finally, we report various percentiles of the estimated uncondition-
al distribution of daily changes in the VIX. The percentiles are de-
noted by percNUM where NUM indicates the percentage level, and
they indicate whether the model can replicate the observed uncon-
ditional density.

To simulate the continuous-time processes we use the same
time-discretization as we have employed for the estimation of the pro-
cesses. Furthermore, we start each simulation at the long-term mean
value of the VIX and use 50,000 trajectories to calculate the p-values.

This test procedure has several advantages over simple in-sample fit
statistics (most of which do not, in any case, apply to the Bayesian
framework we use). Firstly, it allows us to detect exactly which charac-
teristics of theVIX amodel struggles to reproduce. Secondly, it allows us
to compare the models in both a relative and an absolute sense. That is,
as well as comparing the performance of competingmodels, our proce-
dure also indicateswhether eachmodel provides a good or bad descrip-
tion of the observed VIX dynamics. Thirdly, it takes parameter
uncertainty into account because it draws the structural parameters
randomly from the posterior density.

4. Data

The VIX volatility index is constructed from standard European S&P
500 index options for the two delivery dates straddling 30 days to ma-
turity. These are used to infer a constant 30-days-to-maturity volatility
estimate. CBOEpublishes this index on a daily basis andmakes it public-
ly available on their website (www.cboe.com). The construction meth-
odology is based on the results in Britten-Jones and Neuberger (2000)
and hence it allows one to regard VIX an estimate of volatility that is
model free under some fairly unrestrictive assumptions on the equity
index data generation process. We use daily time series data from
January 1990 until May 2010.

VIX and its logarithm are depicted in Fig. 1. As expected, all high vol-
atility periods coincide with either major political events or financial

10 Details about this algorithm are provided upon request. A standard reference in-
cluding a wide range of Metropolis algorithms is Robert and Casella (2004).
11 Very similar statistics have also been used for testing equity index dynamics by
Kaeck and Alexander (in press).

Table 1
Descriptive statistics. This table reports sample statistics for levels and first differences
of the VIX. The sample period for the VIX is from January 1990 until May 2010.

Mean Std dev Skewness Kurtosis Min Max

Level 20.32 9.31 80.86
First difference 0.003 1.512 0.427 21.819 −17.36 16.54

12 The label of the first two statistics includes the term ‘jump’ but this does not imply
that they test for the presence of a jump. In fact, all four statistics in this group only
capture the ability of a model to explain outliers, without attributing any cause. They
could be the result of jumps, or of particularly extreme returns generated by a pure dif-
fusion model.
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market crises. The first such period in our sample corresponds to the
outbreak of the first Gulf War in August 1990, when the VIX exceeded
30% for severalmonths. Following this,markets stayed calm for a couple
of years until July 1997. During this tranquil volatility regime the VIX
only temporarily exceeded 20%. With the Asian crisis in 1997 we en-
tered a sustained period of high uncertainty in equity markets. Several
financial and political events contributed to this: the Long Term Capital
Management bailout in 1998, the bursting of the Dot-Com bubble in
2000 and the 9/11 terror attacks leading to the second Gulf War in
2001. In 2003 VIX levels begin a long downward trend as equity mar-
kets entered another tranquil period which prevailed until 2007.
Then, after the first signs of a looming economic crisis surfaced, VIX
rose again. Following the Lehman Brothers collapse in September
2008 it appeared to jump up, to an all-time high of over 80%. Before
this such high levels of implied volatility had only been observed during
the global equity market crash of 1987, which was before the VIX
existed. Equity markets returned to around 20% volatility in 2009, but
then with the Greek crisis in May 2010, at the end of the sample, the
VIX again appeared to jump up, to around 40%.

Table 1 reports descriptive statistics for the VIX. From a modeling
perspective the most interesting and challenging characteristic are
some huge jumps in the index, indicated by the very large min and
max values of the first difference. Movements of about 15% per day
(about 10 standard deviations!) will pose a challenge to any model try-
ing to describe the evolution of the indices. Interestingly downward
jumps can be of an even higher magnitude and we will discuss this
issue further below.

5. Estimation results

5.1. Jump-diffusion models on the VIX level

First we focus on the jump-diffusion models for the VIX level with
b=0.5, which are reported in the left section of Table 2. Starting with
the pure diffusion model in the first column, we estimate a speed of
mean reversion κ of 0.016 which corresponds to a characteristic time
to mean revert of 1/0.016=63 days. One minus this parameter is ap-
proximately the first-order autocorrelation of the time series, hence
our results imply that volatility is highly persistent. The long-term

volatility value θ is about 20.5% which is close to the unconditional
mean of the process in Table 1. Our parameter estimate for σ is 0.289.13

Several interesting features arise when considering the exponential
jumpmodels in columns 2,where λ1=0 so that jump intensities are in-
dependent of the level of the VIX, and column 3 where λ0=0 but jump
intensities depend on the level of the VIX.14 Firstly, the inclusion of
jumps increases the speed of mean reversion considerably, to 0.037
when λ1=0 and 0.051 when λ0=0. A possible explanation is that the
drift of the process tries to compensate for omitted downward jumps,
so that when volatility is exceptionally high the process can create larg-
er downward moves with an increased κ estimate. Furthermore, in the
jump models the estimates for the second drift parameter θ drop to
about 12–14%, a result that is expected because θ carries a different in-
terpretation once jumps are included. To obtain the long-term volatility
we have to adjust θ by the effect of jumps and our estimation results
imply long-term volatility levels of approximately 21%, similar to the
pure diffusion model. As expected the parameter σ decreases in all
jump models since part of the variation in the VIX is now explained
by the jump component.

When jump probabilities are assumed to be independent of the VIX
level, a jump occurs with a likelihood of 0.107 per day. A parameter of
this magnitude implies about 27 jumps per year, hence such events
may be far more frequent than for many other financial variables such
as stock prices or interest rates. An average-sized jump is 2.38 VIX
points. Jump occurrence in the models with state-dependent jumps is
higher, with average jump probabilities of about 26%.15 As we estimate
more jumps in this case, the average jump size decreases to only 1.58
VIX points.

13 Note that this model was previously studied in Dotsis et al. (2007) but these au-
thors used VIX data from the generally volatile period from October 1997 to March
2004 so our results are not directly comparable. Not surprisingly, the parameter esti-
mates in Dotsis et al. (2007) imply more rapidly moving processes than ours: they es-
timate a (yearly) speed of mean reversion of 9.02 (whereas our yearly equivalent is
4.03) and a long-term volatility level of 24.54%.
14 We have also estimated all models with λ0 and λ1 being simultaneously different
from zero but these results are omitted for expositional clarity. The parameter esti-
mates for these models reveal that jump probabilities are mainly driven by the state-
dependent jump part as λ0 is close to zero. Therefore, the evidence appears to point to-
ward state-dependent jumps. We return to this observation later on.
15 This estimate is based on an average VIX level of about 20%.
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Fig. 1. VIX index. This figure depicts both VIX and its log, as well changes in their values. The sample period for the VIX from January 1990 until end of May 2010.
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We now turn to the non-affinemodels with b=1 in the right half of
Table 2. There are several interesting results. Firstly the speed of mean
reversion κ is smaller than in the square-root models. This possibly
stems from the fact that the diffusion term, through its stronger depen-
dence on the level of the VIX during high-volatility regimes, can create
larger downward jumps and this requires a less rapidly mean-reverting
process. The long-term level of the VIX is, as in the square-root model,
consistent with its unconditional mean. The diffusion parameter σ,
however, is not comparable with previously studied models and its es-
timates range from 0.048 to 0.062. State-independent exponentially
distributed jumps occur with a likelihood of 0.082 per day and state-
dependent jumps are again more likely than state-independent
jumps, but they occur only about half as often as in the square-root
model class. This has an effect on estimated jump-sizes, where we
find that jumps in the non-affine models are more rare events, but
their impact is greater and all jump size estimates are larger than in
the square-root models. Overall, the jump intensities in non-affine
models are still relatively high.

Table 3 provides results from our simulation experiments. These
show that the square-root diffusion model is fundamentally incapable
of producing realistic data as it fails to generate statistics similar to the ob-
served values for almost every statisticweuse. Someof the results are im-
proved when jumps are added, for example using state-independent

jumps the standard deviation and the kurtosis of the data yield more re-
alistic values. Nevertheless, overall the square-root model with or with-
out jumps does a very poor job of explaining the characteristics of the
VIX. The results for the non-affine specification are more encouraging.
Whereas several statistics could not even be produced once in our
50,000 simulations for the square-root diffusion, the non-affine specifica-
tion does a far better job of matching the observed characteristics of the
VIX. However, in absolute terms the non-affine models, with or without
jumps, are still severelymisspecified. Again, there appears to be little ben-
efit from introducing jumps into the models as the models especially fail
to reproduce the statistics that are linked to the jump behavior of the VIX.

5.2. Jump-diffusion models on the log of the VIX level

Structural parameter estimates for the log-VIX models are reported
in Table 4. We consider the models with b=0 first, shown in the left
side of the table. The mean reversion speed κ is more consistent across
models with and without jumps, taking values between 0.014 and
0.017. The long-term level θ for the log process is estimated to be
2.951 in the pure diffusion model, a value that implies a long-term
volatility level of about 19%. The value for this parameter is again depen-
dent on the estimated jump parameters and hence it drops in the jump
models. The implied long-term volatility level however hardly changes,
for example our results in the state-independent and exponential jump
model implies a similar long-term volatility level of 19.9%. Estimates for
σ vary acrossmodels, between 0.04 and 0.06. The jump likelihood in the
log volatility model is again very high, with daily jump probabilities of
20% or more, which implies more than 50 jumps per year. The average
jump probability for the time-varying jump intensity model is of larger
magnitude. The normally distributed jump sizes have mean 0.03with a
standard deviation of around 0.08. Parameter estimates for the log
model with additional dependence of the diffusion term on the level
of the VIX are reported in the right half of Table 4. The only noteworthy
feature of our estimates here is that jump sizes are higher, with an esti-
mated mean of about 0.08 for both models.

Simulation results for the log models are presented in Table 5.
Models with b=1 perform quite well in producing samples with simi-
lar characteristics as the observed VIX time series. The only characteris-
tic that can be rejected at a 5% significance level is the skewness. The
observed statistic is 0.427, but the simulations imply a smaller statistic
in 97.96% of the cases. Apart from this, the pure diffusion model pro-
duces realistic samples. This is true in particular of the large jumps in
the VIX. For example the large negative and positive jumps of more
than −17 and 16 VIX points respectively, creates no obstacle for the
model. Including jumps into the processes can improve some of the

Table 2
Parameter estimates (level models). This table reports the estimates for the structural parameters. The posterior mean is reported as the point estimate, posterior standard devi-
ations and 5%–95% posterior intervals are reported in brackets.

Models on VIX with b=0.5 Models on VIX with b=1

κ 0.016 0.037 0.051 0.014 0.029 0.039
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

[0.011, 0.02] [0.033, 0.041] [0.047, 0.055] [0.01, 0.019] [0.024, 0.034] [0.034, 0.044]
θ 20.496 13.747 12.311 20.510 13.294 13.033

(1.187) (0.567) (0.473) (1.357) (0.561) (0.427)
[18.667, 22.544] [12.806, 14.665] [11.525, 13.076] [18.566, 22.951] [12.358, 14.207] [12.337, 13.739]

σ 0.289 0.229 0.214 0.062 0.050 0.048
(0.004) (0.003) (0.003) (0.001) (0.001) (0.001)

[0.283, 0.296] [0.223, 0.234] [0.209, 0.219] [0.06, 0.063] [0.049, 0.051] [0.047, 0.049]
λ0 0.107 0.082

(0.016) (0.012)
[0.082, 0.134] [0.063, 0.102]

λ1 0.013 0.007
(0.002) (0.001)

[0.01, 0.016] [0.005, 0.008]
ηJ 2.376 1.584 2.708 2.299

(0.185) (0.102) (0.21) (0.161)
[2.104, 2.706] [1.428, 1.759] [2.399, 3.074] [2.057, 2.584]

Table 3
Simulation results (level models). This table reports the p-values for all the statistics
described in Section 3. The closer these values are to 1 or 0 the greater the degree of
model misspecification.

Jump distribution Data VIX with b=0.5 VIX with b=1

No Exp No Exp

Jump type λ0 λ1 λ0 λ1

stadev 1.512 0.9988 0.6276 0.6248 0.8644 0.4395 0.1993
skew 0.427 1.0000 0.0000 0.0000 0.9991 0.0000 0.0000
kurt 21.819 1.0000 0.8474 0.9985 0.9972 0.6537 0.9048
avgmax10 11.556 1.0000 0.4029 0.9587 0.9916 0.1721 0.2386
avgmin10 −10.663 0.0000 0.0000 0.0000 0.0153 0.0000 0.0000
perc1 −3.673 0.0026 0.0000 0.0000 0.3545 0.0045 0.1162
perc5 −2.004 0.9294 0.1149 0.3068 0.7652 0.4198 0.6821
perc95 2.160 0.6397 0.5043 0.0050 0.5909 0.5245 0.1058
perc99 4.642 1.0000 0.0051 0.0108 0.9687 0.0093 0.0008
absmax20 149.620 1.0000 1.0000 1.0000 0.9922 1.0000 0.9999
absmin20 3.810 0.0000 0.0000 0.0000 0.0016 0.0009 0.0018
maxjump 16.540 1.0000 0.5571 0.9122 0.9884 0.3621 0.4735
minjump −17.360 0.0000 0.0000 0.0000 0.0110 0.0000 0.0001
max 80.860 0.9984 1.0000 0.9998 0.8521 0.9968 0.9460
min 9.310 0.9998 0.9514 0.9592 0.9906 0.7969 0.7724
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statistics we use, but overall the inclusion of jumps is, at least as far as
these test statistics are concerned, of no benefit. Interestingly, the
jump models still struggle to capture the observed skewness of the
VIX, but now the models tend to underestimate this statistic as the in-
clusion of jumps decreases the skewness in the models. Using b=0
on the other hand, leads to significant misspecification.

6. Stochastic volatility of volatility

Having shown that the log-VIX models perform better than models
for the VIX level, we now extend the log volatility specification a sto-
chastic volatility-of-volatility (SVV) model as follows:

d log VIXtð Þ ¼ κ θ− log VIXtð Þ½ �dt þ ffiffiffiffiffi
Vt

p
dWt þ ZtdJt

dVt ¼ κv θv−Vt½ �dt þ σv

ffiffiffiffiffi
Vt

p
dWv

t

where the correlation ϱ between the two Brownianmotions is assumed
constant, but possibly non-zero. Considering a non-zero correlation
case is essential in this set-up, as previous evidence points toward a

strong dependence between the VIX and its volatility level. In addition
to a stochastically moving volatility, we allow for normally distributed
jumps as before.

The results presented in Section 5 gave no indication that including
jumps necessarily improves the modelling of the VIX index. However,
the SVV model differs substantially from previously studied specifica-
tions. For this reason we shall retain the possibility of jumps in the sec-
tion and study whether the inclusion of a stochastic vol-of-vol factor
alters our previous conclusions. Also note that the model presented
here is affine, and contrary to the one-dimensional log model with
b=1, this implies that the VIX index is bounded by zero frombelow. Es-
timation of this model is, as before, by MCMC.16

There are several motivations for considering this model. Firstly, the
empirical results in the previous sectionmotivate amore detailed study
of the diffusion part of the process. Considering a stochastic volatility
component is a natural extension for one-dimensional models and
this approach has been successfully applied to other financial variables.
Secondly, in the one-dimensional SDEs studied so far the jump proba-
bility is extremely high, so jumps cannot be interpreted as rare and ex-
treme events, which is themain economicmotivation for incorporating
jumps into a diffusion model. The diffusion part is designed to create
normal movements, whereas jumps contribute occasional shocks that
are – because of their magnitude – unlikely to come from a pure diffu-
sion process. If jumps were to occur very frequently these models may
be poorly specified, or at least not compatible with their usual interpre-
tation. A third motivation for considering the SVV specification is to
capture the clustering in volatility of index changes that is evident
from Fig. 1. As opposed to a transient shock, this feature is commonly
modeled with a stochastic volatility component.

Table 6 reports the estimated parameters of the SVV model, first
without jumps and then with normally distributed jumps. The
speed of mean reversion parameter κ is lower than in any previously
reported model, with an estimateof 0.011 and 0.012. As mentioned
above, κ is likely to be distorted upward when amodel cannot capture
large negative outliers, so this result indicates that SVV models are
more consistent with large downward moves than models without
stochastic volatility. Furthermore, both models imply a long-term

Table 4
Parameter estimates (log models). This table reports the estimates for the structural parameters. The posterior mean is reported as the point estimate, posterior standard deviations
and 5%–95%posterior intervals are reported in brackets.

Models on log(VIX) with b=0 Models on log(VIX) with b=1

κ 0.014 0.016 0.017 0.014 0.019 0.022
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
[0.01, 0.018] [0.012, 0.019] [0.013, 0.02] [0.01, 0.018] [0.015, 0.023] [0.018, 0.026]

θ 2.951 2.562 2.534 2.955 2.098 2.152
(0.064) (0.076) (0.077) (0.063) (0.115) (0.096)
[2.848, 3.055] [2.431, 2.673] [2.403, 2.649] [2.858, 3.064] [1.898, 2.274] [1.988, 2.298]

σ 0.060 0.043 0.040 0.020 0.016 0.016
(0.001) (0.001) (0.002) (0) (0) (0)
[0.059, 0.062] [0.041, 0.045] [0.037, 0.044] [0.02, 0.021] [0.016, 0.017] [0.015, 0.016]

λ0 0.229 0.215
(0.044) (0.045)
[0.164, 0.303] [0.154, 0.296]

λ1 0.111 0.084
(0.027) (0.017)
[0.069, 0.156] [0.06, 0.114]

μJ 0.027 0.022
(0.005) (0.005)
[0.019, 0.036] [0.015, 0.031]

σJ 0.082 0.074
(0.006) (0.007)
[0.074, 0.092] [0.065, 0.085]

ηJ 0.078 0.074
(0.006) (0.006)
[0.068, 0.088] [0.065, 0.084]

Table 5
Simulation results (log models). This table reports the p-values for all the statistics de-
scribed in Section 3.

Jump distribution Data log(VIX) with b=0 log(VIX) with b=1

No Normal No Exp

Jump type λ0 λ1 λ0 λ1

stadev 1.512 0.9250 0.9455 0.8545 0.6069 0.1484 0.0895
skew 0.427 0.9997 0.0110 0.0257 0.9796 0.0001 0.0004
kurt 21.819 0.9999 0.9880 0.9764 0.9426 0.5219 0.4089
avgmax10 11.556 0.9996 0.9804 0.9450 0.8881 0.1114 0.0627
avgmin10 −10.663 0.0009 0.0002 0.0048 0.1601 0.0747 0.2679
perc1 −3.673 0.2352 0.0664 0.2159 0.6917 0.6236 0.8047
perc5 −2.004 0.6930 0.2017 0.3245 0.7873 0.7829 0.8531
perc95 2.160 0.6189 0.7076 0.5310 0.4228 0.0554 0.0444
perc99 4.642 0.9907 0.8342 0.7257 0.7814 0.0165 0.0133
absmax20 149.620 0.9997 0.9995 0.9951 0.8903 0.8846 0.6811
absmin20 3.810 0.0367 0.0545 0.0893 0.0906 0.1295 0.2282
maxjump 16.540 0.9985 0.9309 0.8881 0.8572 0.1603 0.0953
minjump −17.360 0.0010 0.0016 0.0096 0.1253 0.0633 0.2028
max 80.860 0.9452 0.9635 0.8961 0.6763 0.6506 0.4037
min 9.310 0.9929 0.9770 0.9742 0.9466 0.9315 0.9539 16 We provide details on the algorithm used here upon request.
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volatility level, of between 21% and 22%. The correlation is, as
expected, positive with high (and again virtually identical) estimates
of 0.653 and 0.659.

The characteristics of the variance equation are very interesting, be-
cause this process differs somewhat from variance processes estimated
from other financial variables. The speed of mean-reversion in the
variance equation κv is very high, at 0.11 for the diffusion model. This
implies a very rapidly reverting process with an estimated value 10
times larger than for the VIX itself. Including a further jump component
decreases this parameter only marginally, to a value of 0.097. The
mean-reversion level for the variance θv is consistent with the estimate
from the one-dimensional diffusion model. The estimate of 0.06 in the
log volatility diffusion model reported in Table 4 is approximately
equal to the average volatility level implied by our estimate for θv. In
order to visualize the variance V over the sample period, we provide
the estimated sample path of this latent variable in Fig. 2.

We have seen that including (state-independent) jumps into the
SVV model changes parameter estimates only marginally, and this is
probably because jumps occur only every six months, on average.
Now, as desired, jump events concentrate only on exceptional outliers
that cannot be explained with a more persistent stochastic vol-of-vol
process. This is also reflected in the estimated jump sizes as, for all spec-
ifications, we obtain higher estimated jump sizes with a mean of 0.136
and a standard deviation of 0.103. This adds further evidence that jumps
are now covering only the more extreme events. Also modelling

negative jumps are of nomajor importance, as depicted by the estimat-
ed jump sizes depicted in Fig. 3.

These results pose an interesting question: Are jumps necessary at all
once we account for stochastic vol-of-vol? To answer this consider the 5%
percentile of the posterior distribution of λ0, which is 0.003. This pro-
vides some statistical evidence in favor of including jumps, although
they occur very infrequently. However, there is no evidence from our
simulation results in Table 7 that including jumps improves the
model.With or without jumps, the SVVmodel is capable of reproducing
all the characteristics of the VIX that we consider. For both models it is
the lower percentiles that are most difficult to reproduce, but still, the
p-values for all models are between 0.05 and 0.95 so neither model
can be rejected.

The rare occurrence of jumps is now similar to those found in the eq-
uity index market (Eraker et al., 2003). However, there is an important
difference, because including jumps seems less important for volatility
than it is for the index itself. The variance process of the VIX is much
more quicklymean reverting and rapidlymoving than the variance pro-
cess of the S&P 500 index, omitting jumps from the specification has a
lesser impact than it would have when variance is more persistent.

It is instructive to investigate the jumps in log-VIX events depicted
in Fig. 3. Interestingly, the biggest estimated jump in the sample period
is not obtained during the highly turbulent period of the banking crisis.
This is because most of the movements are now captured by the sto-
chastic vol-of-vol component. Instead there is an increased intensity

Table 6
Parameter estimates (log vol-of-vol models). This table reports the estimates for the structural parameters. The posterior mean is reported as the point estimate, posterior standard
deviations are given in parenthesis.

κ θ κv θv×100 σv×10 ρ λ0 μJ σJ

Mean 0.011 3.073 0.110 0.349 0.183 0.653
Standard dev (0.002) (0.086) (0.013) (0.016) (0.01) (0.038)
Mean 0.012 2.983 0.097 0.330 0.162 0.659 0.009 0.136 0.103
Standard dev (0.002) (0.072) (0.015) (0.035) (0.016) (0.039) (0.004) (0.054) (0.027)
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Fig. 2. Estimated variance paths. This figure depicts the estimated variance path (multiplied by 100) for the log(VIX) for the diffusion case.
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Fig. 3. Estimated jumps. This figure depicts the average jump distribution for the model with normally distributed jumps.
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of smaller jumps, so the vol-of-vol could adjust to capture even large
outliers in the data. In other words, the clustering of large movements
was best captured with a stochastic vol-of-vol component. One of the
largest jumps in our sample was in November 1991, when the VIX
jumped from less than14 to over 21 in one day. This jumpwas preceded
by several tranquil months with little movements in the VIX. The same
applies to the jumps in February 1993 and in February 1994. Another
large jump is estimated in February 2007. Prior to this, volatility was
bounded between about 10 and 13% for many months. Then a slump
in the Chinese stock market created a knock-on effect for Europe, Asia
and North America with substantial losses for all major equity indices
on 27 February. This leftfinancialmarkets in doubt over economic pros-
pects, and the VIX jumped up by more than 7 points. This jump is diffi-
cult to create with a stochastic vol-of-vol component because its arrival
came as a total surprise and thus required a substantial upward jump.
Based on these observations we conclude that volatility jumps are re-
quired, but only for surprising events triggered by totally unexpected
political or financial news. Note also, that the jumps estimated by the
model occur during periods of low VIX levels thus there is no evidence
in this model that suggests that jumps are more likely when VIX levels
are high.

7. Applications to risk management

A standard task in risk management is to explore the effect of po-
tential shocks in economic variables. The evolution of VIX can affect
bank portfolios for many reasons, either indirectly as a measure of
volatility, or more directly as the underlying of several derivative
products such as futures, swaps and options. In this section, we take
the most drastic scenario observed in our sample period and investi-
gate the probability assigned to this scenario under different models
for the VIX. To this end, we consider the evolution of VIX during the
outburst of the banking crisis in autumn 2008, when VIX increased
from 21.99 on September 2, to reach its all-time high of 80.06 only
few weeks later on October 27. Preceding this peak, the index was in-
creasing almost continually from the beginning of September, with
only minor and very temporary corrections.17

A possible strategy is to re-estimate the models using data until
September 2008, as this would allow us to access the predictability of

such a scenario. However, it is very unlikely that a pure statistical
model based on our data could have predicted this scenario because
since its inception the most extreme value of the VIX before October
2008 was 45.74, far away from the highs that were witnessed during
the banking crisis. This is a deficiency of the data set, as even higher vol-
atility levels were recorded during the global market crash of 1987,
when the old volatility index VXO reached levels of more than 100%.
For any risk management application it would be therefore crucial to
take this pre-sample data into account, or to use parameter estimates
from shocked data.

The questionwe address here is not the predictability of the banking
crisis but whether the models, after observing such an extreme event
(and incorporating it into the estimated parameters) are capable of gen-
erating such scenario, or whether they still consider it impossible. Put
differently, we ask how plausible is such a scenario under the different
models, with parameters estimated after the event. For each model, we
use the VIX value on September 2, 2008 (before the crisis) as our
starting value and simulate the process until October 27, 2008
according to the parameter estimates presented in the two previous
sections.18 Then, after simulating 100,000 paths, we gage the likely
range of values produced by the models by calculating percentiles for
the two-month period. In each simulation the parameter values are
drawn randomly from the posterior distribution, so that the analysis
takes account of the uncertainty in estimated parameters.

Fig. 4 illustrates the results of this exercise for six of the models.
For the one-factor models we consider the most general specifica-
tions, with time-varying jump probabilities. Other assumptions on
the jump part of the processes lead to virtually identical conclusions
and so we omit these for expositional clarity. In both affine and
non-affine models of the VIX itself the index ends up far beyond the
99.9%-percentile. Log models fare better but still assign only a tiny
probability to the likelihood of the observed path. The best among
the one-factor models is the log model with additional dependence
of the diffusion coefficient on the VIX level. This finding confirms
our previous evidence that such a modeling approach yields the
most realistic results, among all the one-factor models considered.
SVV models also do a good job, as for both processes the actual time
series ends between the 99% and 99.9% percentiles. Indeed, given
that our sample consists of almost 150 such two month periods, we
would hope that such a one-off scenario is predicted in less than 1%
of the cases. We conclude that only the one-factor log model with
b=1 and the stochastic volatility-of-volatility models provide accu-
rate assessments of the likelihood of the banking crisis scenario.

8. Conclusion

This paper has studied alternative jump-diffusion models for the
VIX volatility index, considering two broad modeling approaches,
i.e. to model the VIX directly or its log value. Our models include
one-factor affine and non-affine diffusion and jump-diffusion models,
and two-factor stochastic volatility models. We evaluate these
models using probability values for a wide range of statistics and as-
sess their performance for a risk management application.

As in Dotsis et al. (2007) we find that modeling the VIX log returns
(equivalently, the log value of VIX) is superior to modeling its level. Be-
yond this we present a variety of novel contributions to the literature.
First, we find that non-affinemodels, in which the diffusion term is pro-
portional to the VIX level or log respectively, are far superior to their af-
fine counterparts. The main reason for this is that non-affine models
accommodate a more rapidly moving VIX during high volatility levels.
Not only are affinemodels unable to reproduce the observed character-
istics of the VIX, they also assign too great an intensity to the jump pro-
cesses. This is problematic, since the intuition of introducing jumps is17 Another application of VIX index processes, to pricing VIX futures and options, has

been removed for brevity. Details about these findings (which show that, consistent
with Mencia and Sentana (in press), a stochastic vol-of-vol model has a marked impact
on VIX derivatives) are provided upon request.

18 In addition, for the SVV models we use the estimated variance on September 2 as a
starting value.

Table 7
Simulation results (stochastic vol-of-vol models).

Stochastic-vol-of-vol models on log(VIX)

Jump distribution Data p-values

no normal

stadev 1.512 0.260 0.245
skew 0.427 0.713 0.338
kurt 21.819 0.829 0.791
avgmax10 11.556 0.607 0.505
avgmin10 −10.663 0.382 0.342
perc1 −3.673 0.924 0.911
perc5 −2.004 0.922 0.913
perc95 2.160 0.129 0.133
perc99 4.642 0.353 0.289
absmax20 149.620 0.728 0.748
absmin20 3.810 0.294 0.308
maxjump 16.540 0.563 0.457
minjump −17.360 0.310 0.275
max 80.860 0.369 0.381
min 9.310 0.777 0.762
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that they cover rare and extreme events. There is also strong statistical
evidence in favor of time-varying jump intensities in these models.
However since one-factor models are misspecified, it is likely that re-
sults for these models are distorted. Our simulation experiments show
that the absolute benefit from the addition of jumps to one-factor
models can be fairly small.

The only one-factor model that can explain a multitude of facets of
the VIX is the non-affine log model. A yet more promising approach to
capturing the extreme behavior of the VIX is the inclusion of a stochastic,
mean-reverting variance process. This model passes all the specification
hurdles and yields superior results in our scenario analysis. It is also ap-
pealing because jumps are rare and extreme events, which only occur
on days that can be linked to major political or financial news.
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Fig. 4. Simulated VIX 2008. This figure depicts the true evolution of the VIX during the beginning of the banking crisis in 2008. In addition, we plot 95%, 99% and 99.9% percentiles.
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